4.7 Article

Activated Plasmonic Nanoaggregates for Dark-Field in Situ Imaging for HER2 Protein Imaging on Cell Surfaces

Journal

BIOCONJUGATE CHEMISTRY
Volume 31, Issue 3, Pages 631-638

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.bioconjchem.9b00787

Keywords

-

Funding

  1. National Natural Science Foundation of China [21575056]
  2. Natural Science Foundation of Shandong Province of China [ZR2016JL010]
  3. Key Technology Research and Development Program of Shandong Province [2018GSF118172]

Ask authors/readers for more resources

Dark-field microscopy (DFM) based on localized surface plasmon resonance (LSPR) was used for observation of experimental phenomena, which is a hopeful nondamaging and non-photobleaching biological imaging technique. In this strategy, plasma nanoaggregates with stronger scattering efficiency were formed in the presence of the target, causing a turn-on phenomenon, when asymmetry modified AuNPs were introduced as probes with zero LSPR background. First, Au-1 -N-3 probe and Au-2-C C probe were designed for the cycloaddition between azide and alkyne to form AuNP dimers under catalytic action by Cut, which was obtained from the reduction of Cu2+ by sodium ascorbate. The two kinds of probes were successfully used for the detection of Cu2+ in rat serum. Then, to apply this concept to protein on cells, DNA and antibody were modified on the probes. DNA1 /Au-1 -N-3 probe and anti-HER2/Au,-C C probe were proposed for HER2 protein DFM on cells. By designing an aptamer sequence in primer, the rolling circle amplification (RCA) was introduced in HER2 DFM on cells, and the image signal was much brighter than that from no-RCA. The unique design made it easier to discriminate the target signal from background noise in cell DFM. This method might be used in the fields of molecular diagnostics and cell imaging.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available