4.7 Article

Analysis of a stochastic tumor-immune model with regime switching and impulsive perturbations

Journal

APPLIED MATHEMATICAL MODELLING
Volume 78, Issue -, Pages 482-504

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2019.10.010

Keywords

Tumor-immune model; Random noises; Impulse; Persistence; Extinction

Funding

  1. National Natural Science Foundation of P.R. China [11771174]
  2. Natural Science Foundation of Jiangsu Province [BK20170067]
  3. 333 High-level Personnel Training Project
  4. Qinglan Project of Jiangsu Province, Young Talent Lifting Project of Jiangsu Province Science and Technology Association, Jiangsu College Students Innovative Entrepreneurial Training Program [201910323028Y]

Ask authors/readers for more resources

In this article, an impulsive stochastic tumor-immune model with regime switching is formulated and explored. Firstly, it is proven that the model has a unique global positive solution. Then sufficient criteria for extinction, non-persistence in the mean, weak persistence and stochastic permanence are provided. The threshold value between extinction and weak persistence is gained. In addition, the lower- and the upper-growth rates of tumor cells are estimated. The results demonstrate that the dynamics of the model are intimately associated with the random perturbations and impulsive perturbations. Finally, biological implications of the results are addressed with the help of real data and numerical simulations. (C) 2019 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Mathematics, Applied

Dynamics of a stochastic delay competitive model with harvesting and Markovian switching

Meng Liu, Jingyi Yu, Partha Sarathi Mandal

APPLIED MATHEMATICS AND COMPUTATION (2018)

Article Physics, Multidisciplinary

Survival analysis of a stochastic service-resource mutualism model in a polluted environment with pulse toxicant input

Hui Wang, Fangmei Pan, Meng Liu

PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS (2019)

Article Mathematics, Applied

Permanence and extinction of a stochastic hybrid model for tumor growth

Meng Liu, Meiling Deng

APPLIED MATHEMATICS LETTERS (2019)

Article Physics, Multidisciplinary

Optimal harvesting of a stochastic commensalism model with time delay

Weiming Ji, Meng Liu

PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS (2019)

Article Mathematics, Applied

Analysis of a stochastic hybrid population model with Allee effect

Meng Liu, Meiling Deng

APPLIED MATHEMATICS AND COMPUTATION (2020)

Article Biology

Dynamics of a nutrient-phytoplankton model with random phytoplankton mortality

Da Song, Meng Fan, Shihan Yan, Meng Liu

JOURNAL OF THEORETICAL BIOLOGY (2020)

Article Mathematics, Applied

Optimal harvesting of a stochastic mutualism model with regime-switching

Meng Liu, Chuanzhi Bai

APPLIED MATHEMATICS AND COMPUTATION (2020)

Article Mathematics, Applied

Persistence and extinction of a stochastic predator-prey model with modified Leslie-Gower and Holling-type II schemes

Dengxia Zhou, Meng Liu, Zhijun Liu

ADVANCES IN DIFFERENCE EQUATIONS (2020)

Article Mathematics, Applied

Dynamical bifurcation and explicit stationary density of a stochastic population model with Allee effects

Weiming Ji, Yuqian Zhang, Meng Liu

Summary: This article discusses a stochastic differential equation describing the evolution of a species in the presence of Allee effects. By using the Feller boundary classification criteria, it is shown that the model has a unique dynamical bifurcation point increment with stability properties. The theoretical findings are applied to investigate the living situation of Painted Hunting Dogs in Africa.

APPLIED MATHEMATICS LETTERS (2021)

Article Mathematics, Applied

Dynamics of a stochastic population model with Allee effects under regime switching

Weiming Ji, Meng Liu

ADVANCES IN DIFFERENCE EQUATIONS (2020)

Article Mathematics, Interdisciplinary Applications

Stationary distribution of a stochastic ratio-dependent predator-prey system with regime-switching

Zhaojuan Wang, Meiling Deng, Meng Liu

Summary: This article investigates a stochastic ratio-dependent predator-prey model with regime-switching, showing that the model has a unique stationary distribution and the transition probability of the solution converges to the stationary distribution at an exponential rate. The biological implications of the results are discussed through numerical simulations.

CHAOS SOLITONS & FRACTALS (2021)

Article Computer Science, Interdisciplinary Applications

Invariant measure of a stochastic food-limited population model with regime switching

Dagen Li, Meng Liu

MATHEMATICS AND COMPUTERS IN SIMULATION (2020)

Article Engineering, Multidisciplinary

А particle model of interaction between weakly non-spherical bubbles

A. A. Aganin, A. I. Davletshin

Summary: A mathematical model of interaction of weakly non-spherical gas bubbles in liquid is proposed in this paper. The model equations are more accurate and compact compared to existing analogs. Five problems are considered for validation, and the results show good agreement with experimental data and numerical solutions. The model is also used to analyze the behavior of bubbles in different clusters, providing meaningful insights.

APPLIED MATHEMATICAL MODELLING (2024)

Article Engineering, Multidisciplinary

Analysis of flatness and critical crown of hot-rolled strip based on thermal-mechanical coupled residual stress analytical model

Hao Wu, Jie Sun, Wen Peng, Lei Jin, Dianhua Zhang

Summary: This study establishes an analytical model for the coupling of temperature, deformation, and residual stress to explore the mechanism of residual stress formation in hot-rolled strip and how to control it. The accuracy of the model is verified by comparing it with a finite element model, and a method to calculate the critical exit crown ratio to maintain strip flatness is proposed.

APPLIED MATHEMATICAL MODELLING (2024)

Article Engineering, Multidisciplinary

The s-version finite element method for non-linear material problems

Shengwen Tu, Naoki Morita, Tsutomu Fukui, Kazuki Shibanuma

Summary: This study aimed to extend the finite element method to cope with elastic-plastic problems by introducing the s-version FEM. The s-version FEM, which overlays a set of local mesh with fine element size on the conventional FE mesh, simplifies domain discretisation and provides accurate numerical predictions. Previous applications of the s-version FEM were limited to elastic problems, lacking instructions for stress update in plasticity. This study presents detailed instructions and formulations for addressing plasticity problems with the s-version FEM and analyzes a stress concentration problem with linear/nonlinear material properties.

APPLIED MATHEMATICAL MODELLING (2024)

Article Engineering, Multidisciplinary

Vibration analysis of radial tire using the 3D rotating hyperelastic composite REF based on ANCF

Bo Fan, Zhongmin Wang

Summary: A 3D rotating hyperelastic composite REF model was proposed to analyze the influence of tread structure and rotating angular speed on the vibration characteristics of radial tire. Nonlinear dynamic differential equations and modal equations were established to study the effects of internal pressure, tread pressure sharing ratio, belt structure, and rotating angular speed on the vibration characteristics.

APPLIED MATHEMATICAL MODELLING (2024)

Article Engineering, Multidisciplinary

On an annular crack near an arbitrarily graded interface in FGMs

X. W. Chen, Z. Q. Yue, Wendal Victor Yue

Summary: This paper examines the axisymmetric problem of a flat mixed-mode annular crack near and parallel to an arbitrarily graded interface in functionally graded materials (FGMs). The crack is modeled as plane circular dislocation loop and an efficient solution for dislocation in FGMs is used to calculate the stress field at the crack plane. The analytical solutions of the stress intensity factors are obtained and numerical study is conducted to investigate the fracture mechanics of annular crack in FGMs.

APPLIED MATHEMATICAL MODELLING (2024)

Article Engineering, Multidisciplinary

Dynamic modeling and experimental verification of an L-shaped pipeline in aero-engine subjected to base harmonic and random excitations

Xumin Guo, Jianfei Gu, Hui Li, Kaihua Sun, Xin Wang, Bingjie Zhang, Rangwei Zhang, Dongwu Gao, Junzhe Lin, Bo Wang, Zhong Luo, Wei Sun, Hui Ma

Summary: In this study, a novel approach combining the transfer matrix method and lumped parameter method is proposed to analyze the vibration response of aero-engine pipelines under base harmonic and random excitations. The characteristics of the pipelines are investigated through simulation and experiments, validating the effectiveness of the proposed method.

APPLIED MATHEMATICAL MODELLING (2024)

Article Engineering, Multidisciplinary

Analysis of layered soil under general time-varying loadings by fractional-order viscoelastic model

Xiangyu Sha, Aizhong Lu, Ning Zhang

Summary: This paper investigates the stress and displacement of a layered soil with a fractional-order viscoelastic model under time-varying loads. The correctness of the solutions is validated using numerical methods and comparison with existing literature. The research findings are of significant importance for exploring soil behavior and its engineering applications under time-varying loads.

APPLIED MATHEMATICAL MODELLING (2024)

Article Engineering, Multidisciplinary

Nonlinear torsional buckling of corrugated core sandwich toroidal shell segments with graphene-reinforced coatings in temperature change using the Ritz energy method

Thuy Dong Dang, Thi Kieu My Do, Minh Duc Vu, Ngoc Ly Le, Tho Hung Vu, Hoai Nam Vu

Summary: This paper investigates the nonlinear torsional buckling of corrugated core sandwich toroidal shell segments with functionally graded graphene-reinforced composite (FG-GRC) laminated coatings in temperature change using the Ritz energy method. The results show the significant beneficial effects of FG-GRC laminated coatings and corrugated core on the nonlinear buckling responses of structures.

APPLIED MATHEMATICAL MODELLING (2024)

Article Engineering, Multidisciplinary

Mindlin cracked plates modelling and implementation in train-track coupled dynamics

Zhihao Zhai, Chengbiao Cai, Qinglai Zhang, Shengyang Zhu

Summary: This paper investigates the effect of localized cracks induced by environmental factors on the dynamic performance and service life of ballastless track in high-speed railways. A mathematical approach for forced vibrations of Mindlin plates with a side crack is derived and implemented into a train-track coupled dynamic system. The accuracy of this approach is verified by comparing with simulation and experimental results, and the dynamic behavior of the side crack under different conditions is analyzed.

APPLIED MATHEMATICAL MODELLING (2024)

Article Engineering, Multidisciplinary

Maxwell homogenisation methodology for evaluation of effective elastic constants of weakly-nonlinear particulate composites

James Vidler, Andrei Kotousov, Ching-Tai Ng

Summary: The far-field methodology, developed by J.C. Maxwell, is utilized to estimate the effective third order elastic constants of composite media containing random distribution of spherical particles. The results agree with previous studies and can be applied to homogenization problems in other fields.

APPLIED MATHEMATICAL MODELLING (2024)

Article Engineering, Multidisciplinary

Three novel computational modeling frameworks of 3D-printed graphene platelets reinforced functionally graded triply periodic minimal surface (GPLR-FG-TPMS) plates

Kim Q. Tran, Tien-Dat Hoang, Jaehong Lee, H. Nguyen-Xuan

Summary: This study presents novel frameworks for graphene platelets reinforced functionally graded triply periodic minimal surface (GPLR-FG-TPMS) plates and investigates their performance through static and free vibration analyses. The results show that the mass density framework has potential for comparing different porous cores and provides a low weight and high stiffness-to-weight ratio. Primitive plates exhibit superior performance among thick plates.

APPLIED MATHEMATICAL MODELLING (2024)

Article Engineering, Multidisciplinary

Advanced finite element analyses to compute the J-integral for delaminated composite plates

Bence Hauck, Andras Szekrenyes

Summary: This study explores several methods for computing the J-integral in laminated composite plate structures with delamination. It introduces two special types of plate finite elements and a numerical algorithm. The study presents compact formulations for calculating the J-integral and applies matrix multiplication to take advantage of plate transition elements. The models and algorithms are applied to case studies and compared with analytical and previously used finite element solutions.

APPLIED MATHEMATICAL MODELLING (2024)

Article Engineering, Multidisciplinary

An effective model for bolted flange joints and its application in vibrations of bolted flange joint multiple-plate structures: Theory with experiment verification

Wu Ce Xing, Jiaxing Wang, Yan Qing Wang

Summary: This paper proposes an effective mathematical model for bolted flange joints to study their vibration characteristics. By modeling the flange and bolted joints, governing equations are derived. Experimental studies confirm that the model can accurately predict the vibration characteristics of multiple-plate structures.

APPLIED MATHEMATICAL MODELLING (2024)

Article Engineering, Multidisciplinary

Dynamic modeling and nonlinear analysis for lateral-torsional coupling vibration in an unbalanced rotor system

Pingchao Yu, Li Hou, Ke Jiang, Zihan Jiang, Xuanjun Tao

Summary: This paper investigates the imbalance problem in rotating machinery and finds that mass imbalance can induce lateral-torsional coupling vibration. By developing a model and conducting detailed analysis, it is discovered that mass imbalance leads to nonlinear time-varying characteristics and there is no steady-state torsional vibration in small unbalanced rotors. Under largely unbalanced conditions, both resonant and unstable behavior can be observed, and increasing lateral damping can suppress instability and reduce lateral amplitude in the resonance region.

APPLIED MATHEMATICAL MODELLING (2024)

Article Engineering, Multidisciplinary

Static bending and forced vibration analyses of a piezoelectric semiconductor cylindrical shell within first-order shear deformation theory

Yong Cao, Ziwen Guo, Yilin Qu

Summary: This paper investigates the mechanically induced electric potential and charge redistribution in a piezoelectric semiconductor cylindrical shell. The results show that doping levels can affect the electric potentials and mechanical displacements, and alter the peak position of the zeroth-order electric potential. The doping level also has an inhibiting effect on the first natural frequency. These findings are crucial for optimizing the design and performance of cylindrical shell-shaped sensors and energy harvesters.

APPLIED MATHEMATICAL MODELLING (2024)