4.8 Article

Comparison of optimization frameworks for the design of a multi-energy microgrid

Journal

APPLIED ENERGY
Volume 257, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2019.113982

Keywords

Multi-energy; Optimal planning; Quadratic programming; Mixed integer linear programming; Evolutionary algorithms

Funding

  1. National Research Foundation, Prime Minister's Office, Singapore [NRF-ENIC-SERTD-SMES-NTUJTCI3C-2016]

Ask authors/readers for more resources

The scope of the paper is to investigate different strategies for the design of a multi-energy system considered as a systemic optimization problem. The objective is to determine the best sizes of the energy assets such as electrochemical and thermal storages, cogeneration units, solar generators and chillers. In these cases, the techno-economic optimization is a tradeoff between the operating costs and the capital expenditures in the form of integrated management and design of the system. The paper addresses the challenges of these optimization problems in two steps. The former implements generic piecewise linearization techniques based on non-linear models. That approach allows a significant reduction of the computational time for the management loop of the assets (i.e. optimal power dispatch). The latter takes into consideration the integration of that management loop in different architectures for optimal system planning. The main contribution of the paper toward filling the gap in the literature is to investigate a wide range of optimization frameworks - with bi-level optimizations (using both deterministic and evolutionary methods), Monte-Carlo simulations as well as a performant 'all-in-one' approach in which both sizes and controls are variables of a single mathematical problem formulation. Finally, a thorough results analysis highlights that the best solution tends to be the same whether the objective to optimize is the traditional net present value at the end of the system lifespan or the total yearly cost of ownership.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available