4.7 Article

Nix-Mediated Mitophagy Modulates Mitochondrial Damage During Intestinal Inflammation

Journal

ANTIOXIDANTS & REDOX SIGNALING
Volume 33, Issue 1, Pages 1-19

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2018.7702

Keywords

inflammatory bowel disease; reactive oxygen species; HIF1 alpha; hypoxia

Funding

  1. NIDDK [DK120986, DK101753, DK114464]

Ask authors/readers for more resources

Aims: Mitochondrial stress and dysfunction within the intestinal epithelium are known to contribute to the pathogenesis of inflammatory bowel disease (IBD). However, the importance of mitophagy during intestinal inflammation remains poorly understood. The primary aim of this study was to investigate how the mitophagy protein BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like (BNIP3L/NIX) mitigates mitochondrial damage during intestinal inflammation in the hopes that these data will allow us to target mitochondrial health in the intestinal epithelium as an adjunct to immune-based treatment strategies. Results: In the intestinal epithelium of patients with ulcerative colitis, we found that NIX was upregulated and targeted to the mitochondria. We obtained similar findings in wild-type mice undergoing experimental colitis. An increase in NIX expression was found to depend on stabilization of hypoxia-inducible factor-1 alpha (HIF1 alpha), which binds to the Nix promoter region. Using the reactive oxygen species (ROS) scavenger MitoTEMPO, we were able to attenuate disease and inhibit both HIF1 alpha stabilization and subsequent NIX expression, suggesting that mitochondrially derived ROS are crucial to initiating the mitophagic response during intestinal inflammation. We subjected a global Nix(-/-) mouse to dextran sodium sulfate colitis and found that these mice developed worse disease. In addition, Nix(-/-) mice were found to exhibit increased mitochondrial mass, likely due to the inability to clear damaged or dysfunctional mitochondria. Innovation: These results demonstrate the importance of mitophagy within the intestinal epithelium during IBD pathogenesis. Conclusion: NIX-mediated mitophagy is required to maintain intestinal homeostasis during inflammation, highlighting the impact of mitochondrial damage on IBD progression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available