4.6 Article

Air Space Distension Precedes Spontaneous Fibrotic Remodeling and Impaired Cholesterol Metabolism in the Absence of Surfactant Protein C

Journal

Publisher

AMER THORACIC SOC
DOI: 10.1165/rcmb.2019-0358OC

Keywords

surfactant protein C; pulmonary fibrosis; alveolar dynamics; lipid metabolism; alveolar macrophages

Funding

  1. BREATH (Biomedical Research in Endstage and Obstructive Lung Disease), a Member of the German Center for Lung Research, Cluster of Excellence REBIRTH (Regenerative Biology to Reconstructive Therapy Hannover)
  2. Hochschulinterne Leistungsforderung program (Medizinische Hochschule Hannover)
  3. Spanish Ministry of Science and Universities [RTI2018-094564-B-I00]
  4. regional Government of Madrid [P2018/NMT4389]
  5. Spanish Ministry of Education, Culture, and Sport [AP2012/5099, EST15/00594]

Ask authors/readers for more resources

Surfactant protein (SP)-C deficiency is found in samples from patients with idiopathic pulmonary fibrosis, especially in familial forms of this disease. We hypothesized that SP-C may contribute to fibrotic remodeling in aging mice and alveolar lipid homeostasis. For this purpose, we analyzed lung function, alveolar dynamics, lung structure, collagen content, and expression of genes related to lipid and cholesterol metabolism of aging SP-C knockout mice. In addition, in vitro experiments with an alveolar macrophage cell line exposed to lipid vesicles with or without cholesterol and/or SP-C were performed. Alveolar dynamics showed progressive alveolar derecruitment with age and impaired oxygen saturation. Lung structure revealed that decreasing volume density of alveolar spaces was accompanied by increasing of the ductal counterparts. Simultaneously, septal wall thickness steadily increased, and fibrotic wounds appeared in lungs from the age of 50 weeks. This remarkable phenotype is unique to the 129Sv strain, which has an increased absorption of cholesterol, linking the accumulation of cholesterol and the absence of SP-C to a fibrotic remodeling process. The findings of this study suggest that overall loss of SP-C results in an age-dependent, complex, heterogeneous phenotype characterized by a combination of over-distended air spaces and fibrotic wounds that resembles combined emphysema and pulmonary fibrosis in patients with idiopathic pulmonary fibrosis. Addition of SP-C to cholesterol-laden lipid vesicles enhanced the expression of cholesterol metabolism and transport genes in an alveolar macrophage cell line, identifying a potential new lipid-protein axis involved in lung remodeling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available