4.7 Article

Radial basis function neural network aided adaptive extended Kalman filter for spacecraft relative navigation

Journal

AEROSPACE SCIENCE AND TECHNOLOGY
Volume 96, Issue -, Pages -

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ast.2019.105527

Keywords

-

Ask authors/readers for more resources

This paper presents a novel technique, combining neural network and Kalman filter, for state estimation. The proposed solution provides the estimates of the system states while also estimating the uncertain or unmodeled terms of the process dynamics. The developed algorithm exploits a Radial Basis Function Neural Network that outputs an estimate of the disturbances that are included in the prediction step of an Adaptive Extended Kalman Filter. A recursive form of adaptation is used to limit the computational burden. The proposed solution is compared to classical navigation filter implementations. A realistic spacecraft relative navigation scenario is selected to test the filter performance. Simulations are performed with accurate tuning and also in off-nominal conditions to test the filter robustness. (C) 2019 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available