4.8 Article

Elucidating the Doping Mechanism in Fluorene-Dithiophene-Based Hole Selective Layer Employing Ultrahydrophobic Ionic Liquid Dopant

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 12, Issue 8, Pages 9395-9403

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c00818

Keywords

doping; organic semiconductors; charge transport; XPS; EPR; perovskite solar cells

Funding

  1. European Union H2020 Programme under European Research council Consolidator grant [MOLEMAT] [726360]
  2. ERDF
  3. ESF
  4. National post doc Research grant Juan de la Cierva [FJCI-2017-31761]

Ask authors/readers for more resources

Perovskite solar cells have set a new milestone in terms of efficiencies in the thin film photovoltaics category. Long-term stability of perovskite solar cells is of paramount importance but remains a challenging task. The lack of perovskite solar cells stability in real-time operating conditions erodes and impedes commercialization. Further improvements are essential with a view to delivering longer-lasting photovoltaic (PV) performances. An ideal path in this direction will be to identify novel dopants for boosting the conductivity and hole mobility of hole transport materials (HTMs), and by so doing, the usage of hygroscopic and deliquescent additive materials can be avoided. The present work demonstrates the employment of ionic liquids into a dissymmetric fluorene-dithiophene, FDT (2',7'-bis(bis(4-methoxyphenyl)amino) spiro[cyclopenta[2,1-b:3,4-b']dithiophene-4,9'-fluorene]) based HTM to understand the doping mechanisms. N-Heterocyclic hydrophobic ionic liquid, 1-butyl-3-methylpyidinium bis(trifluoromethylsulfonyl)imide (BMPyTFSI) as p-type dopant for FDT was found to increase the conductivity of FDT, to higher geometrical capacitance, to facilitate homogeneous film formation, and to enhance device stability. Our findings open up a broad range of hole-transport materials to control the degradation of the underlying water-sensitive active layer by substituting a hygroscopic element.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available