4.6 Article

Cell Voltage Equalizer Using a Selective Voltage Multiplier with a Reduced Selection Switch Count for Series-Connected Energy Storage Cells

Journal

ELECTRONICS
Volume 8, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/electronics8111303

Keywords

electric double-layer capacitor (EDLC); equalization; lithium-ion battery (LIB); selection switch; voltage imbalance

Ask authors/readers for more resources

Cell voltage equalization is mandatory to eliminate voltage imbalance of series-connected energy storage cells, such as lithium-ion batteries (LIBs) and electric double-layer capacitors (EDLCs), to ensure years of safe operations. Although a variety of cell equalizers using selection switches have been proposed, conventional techniques require numerous switches in proportion to the cell count and are prone to complexity. This paper proposes a novel cell voltage equalizer using a selective voltage multiplier. By embedding selection switches into the voltage multiplier-based cell voltage equalizer, the number of selection switches can be reduced in comparison with that in conventional topologies, realizing the simplified circuit. A prototype for twelve cells was built, and an equalization test using LIBs was performed. The voltage imbalance decreased down to approximately 20 mV by the proposed equalizer, and the standard deviation of cell voltages at the end of the equalization test was as low as 10 mV, demonstrating its equalization performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available