4.8 Article

Quantum plasmonic control of trions in a picocavity with monolayer WS2

Journal

SCIENCE ADVANCES
Volume 5, Issue 10, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aau8763

Keywords

-

Funding

  1. Office of Naval Research [N00014-16-1-3054]
  2. Robert A. Welch Foundation [A1261]
  3. Air Force Office of Scientific Research [FA9550-181-0141]
  4. NSF [CHE-1609608, ECCS 1809622, IIP-1539999]
  5. Herman F. Heep and Minnie Belle Heep Texas A& M University Endowed Fund
  6. Texas AM Foundation

Ask authors/readers for more resources

Monitoring and controlling the neutral and charged excitons (trions) in two-dimensional (2D) materials are essential for the development of high-performance devices. However, nanoscale control is challenging because of diffraction-limited spatial resolution of conventional far-field techniques. Here, we extend the classical tip-enhanced photoluminescence based on tip-substrate nanocavity to quantum regime and demonstrate controlled nano-optical imaging, namely, tip-enhanced quantum plasmonics. In addition to improving the spatial resolution, we use the scanning probe to control the optoelectronic response of monolayer WS2 by varying the neutral/charged exciton ratio via charge tunneling in Au-Ag picocavity. We observe trion hot spots generated by varying the picometerscale probe-sample distance and show the effects of weak and strong coupling, which depend on the spatial location. Our experimental results are in agreement with simulations and open an unprecedented view of a new range of quantum plasmonic phenomena with 2D materials that will help to design new quantum optoelectronic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available