4.5 Article

Ultrasonic-Assisted Laser Metal Deposition of the Al 4047Alloy

Journal

METALS
Volume 9, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/met9101111

Keywords

laser metal deposition; ultrasonic vibration; aluminium alloy; tensile property

Funding

  1. National Natural Science Foundation of China [51705344, 51775359, 11790282]
  2. Hebei Normal University Science and Technology Projects [QN2015038, QN2016157]
  3. Natural Science Foundation of Hebei Province [E2016210107]

Ask authors/readers for more resources

Ultrasonic-assisted laser metal deposition (UALMD) technology was used to fabricate Al 4047 parts. The effect of the powder feeding laser power, remelting laser power and ultrasonic power on the relative density of the parts was investigated. The relative density, microstructure and mechanical properties of the specimens obtained by the optimized process parameters were compared with the corresponding properties of the cast alloys. The results showed that dense alloys with a maximum density of 99.1% were prepared using ultrasonic vibration and by remelting the previously deposited layer with the optimized processing parameters, and its density was almost equivalent to that of the cast parts. The microstructure of the samples using optimal laser parameters presented columnar Al dendrites and equiaxed Si particles at the boundary of each deposited layer, while the supersaturated Al solid solution was transformed into equiaxed crystal surrounded by fine fibrous Si phases at the center of the layer. Moreover, the size of the primary Al and the Si particles in the samples produced by UALMD was remarkably refined compared to that of the primary Al and Si particles in the cast structure, resulting in grain refining strengthening. The observed variation in the microstructure had an obvious impact on the tensile properties. The mechanical behavior of the deposit obtained by UALMD revealed superior tensile strength, yield strength and tensile ductility values of 227 +/- 3 MPa, 107 +/- 4 MPa and 12.2 +/- 1.4%, which were approximately 51%, 38% and 56% higher than those of the cast materials, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available