4.7 Article

Size-Controllable Melt-Electrospun Polycaprolactone (PCL) Fibers with a Sodium Chloride Additive

Journal

POLYMERS
Volume 11, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/polym11111768

Keywords

melt-electrospinning; fiber; polycaprolactone (PCL); additive; size

Funding

  1. Khon Kaen University
  2. Thailand Research Fund [RSA6280020]
  3. National Nanotechnology Center: Research Network NANOTEC (RNN) program

Ask authors/readers for more resources

Melt-electrospun polycaprolactone (PCL) fibers were fabricated by using NaCl as an additive. The size and morphology of the PCL fibers could be controlled by varying the concentration of the additive. The smallest size of the fibers (2.67 +/- 0.57) mu m was found in the sample with 8 wt% NaCl, which was an order of magnitude smaller than the PCL fibers without the additive. The melt-electrospun fibers were characterized using the differential scanning calorimeter (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) techniques. Interestingly, a trace of NaCl was not found in any melt-electrospun fiber. The remaining PCL after melt-electrospinning was evaporated by annealing, and the NaCl residual was found in the glass syringe. The result confirmed that the NaCl additive was not ejected from the glass syringe in the melt-electrospinning process. Instead, the NaCl additive changed the viscosity and the polarization of the molten polymer. Two parameters are crucial in determining the size and morphology of the electrospun fibers. The higher NaCl concentration could lead to higher polarization of the polymer melt and thus a stronger electrostatic force, but it could also result in an exceedingly high viscosity for melt-electrospinning. In addition, the absence of NaCl in the melt-electrospun PCL fibers is advantageous. The fibers need not be cleaned to remove additives and can be directly exploited in applications, such as tissue engineering or wound dressing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available