4.7 Article

The herpes simplex virus host shutoff (vhs) RNase limits accumulation of double stranded RNA in infected cells: Evidence for accelerated decay of duplex RNA

Journal

PLOS PATHOGENS
Volume 15, Issue 10, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1008111

Keywords

-

Funding

  1. Canadian Institutes for Health Research [MOP 37995]
  2. Alberta Innovates Health Solutions

Ask authors/readers for more resources

The herpes simplex virus virion host shutoff (vhs) RNase destabilizes cellular and viral mRNAs and blunts host innate antiviral responses. Previous work demonstrated that cells infected with vhs mutants display enhanced activation of the host double-stranded RNA (dsRNA)-activated protein kinase R (PKR), implying that vhs limits dsRNA accumulation in infected cells. Confirming this hypothesis, we show that partially complementary transcripts of the UL23/UL24 and UL30/31 regions of the viral genome increase in abundance when vhs is inactivated, giving rise to greatly increased levels of intracellular dsRNA formed by annealing of the overlapping portions of these RNAs. Thus, vhs limits accumulation of dsRNA at least in part by reducing the levels of complementary viral transcripts. We then asked if vhs also destabilizes dsRNA after its initial formation. Here, we used a reporter system employing two mCherry expression plasmids bearing complementary 3' UTRs to produce defined dsRNA species in uninfected cells. The dsRNAs are unstable, but are markedly stabilized by co-expressing the HSV dsRNA-binding protein US11. Strikingly, vhs delivered by super-infecting HSV virions accelerates the decay of these pre-formed dsRNAs in both the presence and absence of US11, a novel and unanticipated activity of vhs. Vhs binds the host RNA helicase eIF4A, and we find that vhs-induced dsRNA decay is attenuated by the eIF4A inhibitor hippuristanol, providing evidence that eIF4A participates in the process. Our results show that a herpesvirus host shutoff RNase destabilizes dsRNA in addition to targeting partially complementary viral mRNAs, raising the possibility that the mRNA destabilizing proteins of other viral pathogens dampen the host response to dsRNA through similar mechanisms. Author summary Essentially all viruses produce double-stranded RNA (dsRNA) during infection. Host organisms therefore deploy a variety of dsRNA receptors to trigger innate antiviral defenses. Not surprisingly, viruses in turn produce an array of antagonists to block this host response. The best characterized of the viral antagonists function by binding to and masking dsRNA and/or blocking downstream signaling events. Other less studied viral antagonists appear to function by reducing the levels of dsRNA in infected cells, but exactly how they do so remains unknown. Here we show that one such viral antagonist, the herpes simplex virus vhs ribonuclease, reduces dsRNA levels in two distinct ways. First, as previously suggested, it dampens the accumulation of partially complementary viral mRNAs, reducing the potential for generating dsRNA. Second, it helps remove dsRNA after its formation, a novel and surprising activity of a protein best known for its activity on single-stranded mRNA. Many other viral pathogens produce proteins that target mRNAs for rapid destruction, and it will be important to determine if these also limit host dsRNA responses in similar ways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available