4.5 Article

Incorporating B cell activating factor (BAFF) into the membrane of rabies virus (RABV) particles improves the speed and magnitude of vaccine-induced antibody responses

Journal

PLOS NEGLECTED TROPICAL DISEASES
Volume 13, Issue 11, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pntd.0007800

Keywords

-

Funding

  1. NIH/NIAID [R01AI123272]

Ask authors/readers for more resources

B cell activating factor (BAFF) is a member of the tumor necrosis factor (TNF) superfamily of cytokines that links innate with adaptive immunity. BAFF signals through receptors on B cells, making it an attractive molecule to potentiate vaccine-induced B cell responses. We hypothesized that a rabies virus (RABV)-based vaccine displaying both antigen and BAFF on the surface of the same virus particle would target antigen-specific B cells for activation and improve RABV-specific antibody responses. To test this hypothesis, we constructed a recombinant RABV-based vector expressing virus membrane-anchored murine BAFF (RABV-ED51-mBAFF). BAFF was incorporated into the RABV particle and determined to be biologically functional, as demonstrated by increased B cell survival of primary murine B cells treated ex-vivo with RABV-ED51-mBAFF. B cell survival was inhibited by pre-treating RABV-ED51-mBAFF with an antibody that blocks BAFF functions. RABV-ED51-mBAFF also activated primary murine B cells ex-vivo more effectively than RABV as shown by significant upregulation of CD69, CD40, and MHCII on the surface of infected B cells. In-vivo, RABV-ED51-mBAFF induced significantly faster and higher virus neutralizing antibody (VNA) titers than RABV while not adversely affecting the longevity of the vaccine-induced antibody response. Since BAFF was incorporated into the virus particle and genome replication was not required for BAFF expression in-vivo, we hypothesized that RABV-ED51-mBAFF would be effective as an inactivated vaccine. Mice immunized with 250 ng/mouse of beta-propriolactone-inactivated RABV-ED51-mBAFF showed faster and higher anti-RABV VNA titers compared to mice immunized with inactivated RABV. Together, this model stands as a potential foundation for exploring other virus membrane-anchored molecular adjuvants to make safer, more effective inactivated RABV-based vaccines. Author summary Over two-thirds of the world's population lives in regions where rabies is endemic. Each year, more than 15 million people receive multi-dose PEP and over 59,000 people die: one rabies death every 9 minutes. Greater than 75% of rabies victims die at home and these deaths are not included in the total deaths due to rabies. Up to 60% of rabies cases are in children, making rabies the seventh most important infectious disease in terms of years of life lost. Current vaccines regimens that are used to prevent rabies in humans are complicated and costly. In this report, we describe a novel mechanism by which to improve rabies vaccination by incorporating a membrane-anchored molecular adjuvant into the surface of the rabies virus particle. This new vaccine strategy significantly enhanced the speed and magnitude of the anti-rabies antibody responses and has the potential to improve the efficacy of currently used inactivated RABV-based vaccines.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available