4.7 Article

Heat wave Intensity Duration Frequency Curve: A Multivariate Approach for Hazard and Attribution Analysis

Journal

SCIENTIFIC REPORTS
Volume 9, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-019-50643-w

Keywords

-

Funding

  1. National Oceanic and Atmospheric Administration (NOAA)
  2. California Energy Commission [500-15-005]
  3. National Science Foundation [1840654]
  4. Div Of Engineering Education and Centers
  5. Directorate For Engineering [1840654] Funding Source: National Science Foundation

Ask authors/readers for more resources

Atmospheric warming is projected to intensify heat wave events, as quantified by multiple descriptors, including intensity, duration, and frequency. While most studies investigate one feature at a time, heat wave characteristics are often interdependent and ignoring the relationships between them can lead to substantial biases in frequency (hazard) analyses. We propose a multivariate approach to construct heat wave intensity, duration, frequency (HIDF) curves, which enables the concurrent analysis of all heat wave properties. Here we show how HIDF curves can be used in various locations to quantitatively describe the likelihood of heat waves with different intensities and durations. We then employ HIDF curves to attribute changes in heat waves to anthropogenic warming by comparing GCM simulations with and without anthropogenic emissions. For example, in Los Angeles, CA, HIDF analysis shows that we can attribute the 21% increase in the likelihood of a four-day heat wave (temperature >31 degrees C) to anthropogenic emissions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available