4.6 Article

Effect of Particle Size on Current-Carrying Friction and Wear Properties of Copper-Graphite Composites by Spark Plasma Sintering

Journal

MATERIALS
Volume 12, Issue 17, Pages -

Publisher

MDPI
DOI: 10.3390/ma12172825

Keywords

particle size; copper-graphite composites; current-carrying friction; wear

Funding

  1. NSAF [U1730130]
  2. Henan Provincial Government [U1804252]
  3. National Natural Science Foundation of China [U1804252]
  4. Open Project of State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences [LSL-1601]

Ask authors/readers for more resources

Copper-graphite composites were prepared by spark plasma sintering (SPS) with copper powder and copper-coated graphite powder. The effect of particle size of raw material powder on the current-carrying friction properties of copper-graphite composites was studied. The results show that the friction coefficient of the composites decreased with the decrease of the particle size of copper-coated graphite powder, the friction coefficient of the composites increased with the decrease of the particle size of the copper powder, the wear rate of the composites increased with the decrease of the particle size of the copper-coated graphite powder, and the wear rate of the composites increased significantly with the decrease of the particle size of the copper-coated graphite powder. The current carrying properties of composites with different particle size ratios and QCr0.5 pairs are good and fluctuate little. The current-carrying friction properties of 150 mu m copper powder and 75 mu m copper-coated graphite powder were found to be the best. The wear surface could be divided into mechanical wear area and arc erosion area. The main area of arc erosion was less than 15% of the total area, and it was mainly distributed in the friction outlet area. The main forms of mechanical wear included furrow, rolling deformation, cold welding, and tearing, among other forms. Graphite film was formed on the surface. The surface quality of the composite prepared by 150 mu m copper powder and 75 mu m copper-coated graphite powder was the best, the Sa was 3.22 mu m, rolling deformation was the most adequate, no large tear pit and furrow appeared, and the carbon content on the worn surface was much higher than that in the composite. The behavior of arc erosion was mainly melting and splashing, and the particle size of the original powder had little effect on it.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available