4.8 Article

Ranking of non-coding pathogenic variants and putative essential regions of the human genome

Journal

NATURE COMMUNICATIONS
Volume 10, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-13212-3

Keywords

-

Funding

  1. Qualcomm Foundation
  2. NIH Center for Translational Science Award (CTSA) [UL1TR002550]

Ask authors/readers for more resources

A gene is considered essential if loss of function results in loss of viability, fitness or in disease. This concept is well established for coding genes; however, non-coding regions are thought less likely to be determinants of critical functions. Here we train a machine learning model using functional, mutational and structural features, including new genome essentiality metrics, 3D genome organization and enhancer reporter data to identify deleterious variants in non-coding regions. We assess the model for functional correlates by using data from tiling-deletion-based and CRISPR interference screens of activity of cis-regulatory elements in over 3Mb of genome sequence. Finally, we explore two user cases that involve indels and the disruption of enhancers associated with a developmental disease. We rank variants in the non-coding genome according to their predicted deleteriousness. The model prioritizes non-coding regions associated with regulation of important genes and with cell viability, an in vitro surrogate of essentiality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available