4.4 Article

A novel computational framework for D(t) from Fluorescence Recovery after Photobleaching data reveals various anomalous diffusion types in live cell membranes

Journal

TRAFFIC
Volume 20, Issue 11, Pages 867-880

Publisher

WILEY
DOI: 10.1111/tra.12690

Keywords

analytic formula; anomalous diffusion; Fluorescence Recovery After Photobleaching; membrane proteins; quantitative analysis; time-dependent diffusion coefficients

Categories

Funding

  1. TAMUC Faculty development grant

Ask authors/readers for more resources

Diffusion of proteins and lipids in lipid membranes plays a pivotal role in almost all aspects of cellular biology, including motility, exo-/endocytosis and signal transduction. For this reason, gaining a detailed understanding of membrane structure and function has long been a major area of cell biology research. To better elucidate this structure-function relationship, various tools have been developed for diffusion measurements, including Fluorescence Recovery After Photobleaching (FRAP). Because of the complexity of cellular microenvironments, biological diffusion is often correlated over time and described by a time-dependent diffusion coefficient, D(t), although the underlying mechanisms are not fully understood. Since D(t) provides important information regarding cellular structures, such as the existence of subresolution barriers to diffusion, many efforts have been made to quantify D(t) by FRAP assuming a single power law, D(t) = Gamma t(alpha - 1) where Gamma and alpha are transport coefficient and anomalous exponent. However, straightforward approaches to quantify a general form of D(t) are lacking. In this study, we develop a novel mathematical and computational framework to compute the mean square displacement of diffusing molecules and diffusion coefficient D(t) from each individual time point of confocal FRAP data without the single power law assumption. Additionally, we developed an auxiliary equation for D(t) which can readily distinguish normal diffusion or single power law anomalous diffusion from other types of anomalous diffusion directly from FRAP data. Importantly, by applying this approach to FRAP data from a variety of membrane markers, we demonstrate the single power law anomalous diffusion assumption is not sufficient to describe various types of D(t) of membrane proteins. Lastly, we discuss how our new approaches can be applied to other fluorescence microscopy tools such as Fluorescence Correlation Spectroscopy (FCS) and Single Particle Tracking (SPT).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available