4.2 Article

Engineered Cartilage from Human Chondrocytes with Homozygous Knockout of Cell Cycle Inhibitor p21

Journal

TISSUE ENGINEERING PART A
Volume 26, Issue 7-8, Pages 441-449

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2019.0214

Keywords

genome editing; CRISPR; regeneration; tissue engineering

Funding

  1. Arthritis National Research Foundation (ANRF)
  2. American Federation for Aging Research

Ask authors/readers for more resources

Osteoarthritis (OA) is a highly prevalent disease with limited treatment options. The search for disease-modifying OA therapies would benefit from a more comprehensive knowledge of the genetic variants that contribute to chondrocyte dysfunction and the barriers to cartilage regeneration. One goal of this study was to establish a system for producing engineered cartilage tissue from genetically defined primary human chondrocytes through genome editing and single-cell expansion. This process was utilized to investigate the functional effect of biallelic knockout of the cell cycle inhibitor p21. The use of ribonucleoprotein (RNP) CRISPR/Cas9 complexes targeting two sites in the coding region of p21 resulted in a high frequency (16%) of colonies with homozygous p21 knockout. Chondrogenic pellet cultures from expanded chondrocytes with complete loss of p21 produced more glycosaminoglycans (GAG) and maintained a higher cell number. Single-cell-derived colonies retained the potential for robust matrix production after expansion, allowing for analysis of colony variability from the same population of targeted cells. The effect of enhanced cartilage matrix production in p21 knockout chondrocytes persisted when matrix production from individual colonies was analyzed. Chondrocytes had lower levels of p21 protein with further expansion, and the difference in GAG production with p21 knockout was strongest at early passages. These results support previous findings that implicate p21 as a barrier to cartilage matrix production and regenerative capacity. Furthermore, this work establishes the use of genome-edited human chondrocytes as a promising approach for engineered tissue models containing user-defined gene knockouts and other genetic variants for investigation of OA pathogenesis. Impact Statement This work provides two important advances to the field of tissue engineering. One is the demonstration that engineered cartilage tissue can be produced from genetically defined populations of primary human chondrocytes. While CRISPR/Cas-9 genome editing has been extensively used in cell lines that divide indefinitely, this work extends the technique to an engineered tissue model system to support investigation of genetic changes that affect cartilage production. A second contribution is the finding that chondrocytes with p21 knockout synthesized more cartilage matrix tissue than unedited controls. This supports the continued investigation of p21 as a potential barrier to effective cartilage regeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available