4.5 Article

Qualitative classification of waste textiles based on near infrared spectroscopy and the convolutional network

Journal

TEXTILE RESEARCH JOURNAL
Volume 90, Issue 9-10, Pages 1057-1066

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0040517519886032

Keywords

near infrared spectroscopy; waste textile recycling; convolutional neural network

Ask authors/readers for more resources

The recycling of waste textiles has become a growth point for the sustainable development of the textile and clothing industry. In addition, sorting is a key link in the follow-up recycling process. Since different fabrics are required to be processed by different technologies, manual sorting not only takes time and effort but also cannot achieve accurate and reliable classification. Based on the analysis of near infrared spectroscopy, the theory and methods of deep learning are used for the qualitative classification of waste textiles in order to complete the automatic fabric composition recognition in the sorting process. Firstly, a standard sample set is established by waveform clipping and normalization, and a Textile Recycling Net deep web suitable for near infrared spectroscopy is established. Then, a pixilated layer is used to facilitate the deep learning of features, and the multidimensional features of the spectrum are extracted by using the multi-layer convolutional and pooling layers. Finally, the softmax classifier is adopted to complete the qualitative classification. Experimental results show that the convolutional network classification method using normalized and pixelated near infrared spectroscopy can realize the automatic classification of several common textiles, such as cotton and polyester, and effectively improve the detection level and speed of fabric components.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available