4.7 Article

Application of TMAH thermochemolysis to the detection of nucleobases: Application to the MOMA and SAM space experiment

Journal

TALANTA
Volume 204, Issue -, Pages 802-811

Publisher

ELSEVIER
DOI: 10.1016/j.talanta.2019.06.076

Keywords

Nucleobases; Thermochemolysis; Derivatization; Pyrolysis; GC-MS; Tetramethylammonium hydroxide (TMAH); SAM; MOMA

Funding

  1. French Space Agency (Centre National d'Etudes Spatiales)
  2. Universidad Nacional Autenoma de Mexico [PAPIIT IN111619]

Ask authors/readers for more resources

Thermochemolysis of seven nucleobases-adenine, thymine, uracil, cytosine, guanine, xanthine, and hypoxanthine-in tetramethylammonium hydroxide (TMAH) was studied individually by pyrolysis gas chromatography mass spectrometry in the frame of the Mars surface exploration. The analyses were performed under conditions relevant to the Sample Analysis at Mars (SAM) instrument of the Mars Curiosity Rover and the Mars Organic Molecule Analyzer (MOMA) instrument of the ExoMars Rover. The thermochemolysis products of each nucleobase were identified and the reaction mechanisms studied. The thermochemolysis temperature was optimized and the limit of detection and quantification of each nucleobase were also investigated. Results indicate that 600 degrees C is the optimal thermochemolysis temperature for all seven nucleobases. The methylated products trimethyl-adenine, 1, 3-dimethyl-thymine, 1, 3-dimethyl-uracil, trimethyl-cytosine, 1, 3, 7-trimethyl-xanthine (caffeine), and dimethyl-hypoxanthine, respectively, are the most stable forms of adenine, thymine, uracil, cytosine, guanine, and xanthine, and hypoxanthine in TMAH solutions. The limits of detection for adenine, thy mine, and uracil were 0.075 nmol; the limits of detection for guanine, cytosine, and hypoxanthine were higher, at 0.40, 0.55, and 0.75 nmol, respectively. These experiments allowed to well constrain the analytical capabilities of the thermochemolysis experiments that will be performed on Mars to detect nucleobases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available