4.6 Article

In silico assessment of human Calprotectin subunits (S100A8/A9) in presence of sodium and calcium ions using Molecular Dynamics simulation approach

Journal

PLOS ONE
Volume 14, Issue 10, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0224095

Keywords

-

Ask authors/readers for more resources

Calprotectin is a heterodimeric protein complex which consists of two subunits including S100A8 and S100A9. This protein has a major role in different inflammatory disease and various types of cancers. In current study we aimed to evaluate the structural and thermodynamic changes of the subunits and the complex in presence of sodium and calcium ions using molecular dynamics (MD) simulation. Therefore, the residue interaction network (RIN) was visualized in Cytoscape program. In next step, to measure the binding free energy, the potential of mean force (PMF) method was performed. Finally, the molecular mechanics Poisson-Boltzmann surface area (MMPBSA) method was applied as an effective tool to calculate the molecular model affinities. The MD simulation results of the subunits represented their structural changes in presence of Ca2+. Moreover, the RIN and Hydrogen bond analysis demonstrated that cluster interactions between Calprotectin subunits in presence of Ca2+ were greater in comparison with Na+. Our findings indicated that the binding free energy of the subunits in presence of Ca2+ was significantly greater than Na+. The results revealed that Ca2+ has the ability to induce structural changes in subunits in comparison with Na+ which lead to create stronger interactions between. Hence, studying the physical characteristics of the human proteins could be considered as a powerful tool in theranostics and drug design purposes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available