4.7 Article

Dark sector unifications: Dark matter-phantom energy, dark matter - constant w dark energy, dark matter-dark energy-dark matter

Journal

PHYSICS LETTERS B
Volume 797, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.physletb.2019.134806

Keywords

-

Ask authors/readers for more resources

The paper brings a novel approach to unification of dark matter and dark energy in terms of a cosmic fluid. A model is introduced in which the cosmic fluid speed of sound squared is defined as a function of its equation of state (EoS) parameter. It is shown how logarithmic part of this function results in dynamical regimes previously not observed in cosmic fluid models. It is shown that in a particular dynamical regime the model behaves as a unification of dark matter and phantom dark energy. Further, it is shown that the model may describe dark matter - dark energy unification in which dark energy asymptotically behaves as dark energy with a constant EoS parameter larger than -1. In a specific parameter regime the unified fluid model also reproduces global expansion similar to Delta CDM model with fluid speed of sound vanishing for small scale factor values and being small, or even vanishing, for large scale factor values. Finally, it is shown how the model may be instrumental in describing the cosmic fluid dark matter-dark energy-dark matter unification. Physical constraints on model parameters yielding such transient dark energy behavior are obtained. (C) 2019 The Authors. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Astronomy & Astrophysics

Inhomogeneity of a rotating quark-gluon plasma from holography

Nelson R. F. Braga, Octavio C. Junqueira

Summary: This study investigates the influence of rotation on the transition temperature of strongly interacting matter produced in non-central heavy ion collisions. By using a holographic description of an AdS black hole, the authors extend the analysis to the more realistic case where the matter spreads over a region around the rotational axis. The results show the coexistence of confined and deconfined phases and are consistent with the concept of local temperature in rotating frames developed by Tolman and Ehrenfest.

PHYSICS LETTERS B (2024)

Article Astronomy & Astrophysics

Constrain the time variation of the gravitational constant via the propagation of gravitational waves

Bing Sun, Jiachen An, Zhoujian Cao

Summary: This paper investigates the effect of gravitational constant variation on the propagation of gravitational waves. By employing two analytical methods, the study finds that variations in the gravitational constant result in amplitude and phase corrections for gravitational waves, and the time variation of the gravitational constant can be constrained through the propagation of gravitational waves.

PHYSICS LETTERS B (2024)

Article Astronomy & Astrophysics

Quantum tunneling from Schwarzschild black hole in non-commutative gauge theory of gravity

Abdellah Touati, Zaim Slimane

Summary: This letter presents the first study of Hawking radiation as a tunneling process within the framework of non-commutative gauge theory of gravity. The non-commutative Schwarzschild black hole is reconstructed using the Seiberg-Witten map and the star product. The emission spectrum of outgoing massless particles is computed using the quantum tunneling mechanism. The results reveal pure thermal radiation in the low-frequency scenario, but a deviation from pure thermal radiation in the high-frequency scenario due to energy conservation. It is also found that noncommutativity enhances the correlations between successively emitted particles.

PHYSICS LETTERS B (2024)

Article Astronomy & Astrophysics

Compact stars: To cross or go around? That is the question

Shahar Hod

Summary: The travel times of light signals between two antipodal points on a compact star's surface are calculated for two different trajectories. It is shown that, for highly dense stars, the longer trajectory along the surface may have a shorter travel time as measured by asymptotic observers. A critical value of the dimensionless density-area parameter is determined for constant density stars to distinguish cases where crossing through the star's center or following a semi-circular trajectory on the surface has a shorter travel time as measured by asymptotic observers.

PHYSICS LETTERS B (2024)