4.6 Article

Experimental study on the oxidation behavior and microstructural evolution of NG-CT-10 and NG-CT-20 nuclear graphite

Journal

NUCLEAR SCIENCE AND TECHNIQUES
Volume 30, Issue 11, Pages -

Publisher

SPRINGER SINGAPORE PTE LTD
DOI: 10.1007/s41365-019-0693-0

Keywords

Nuclear graphite; Oxidation; NG-CT-10; NG-CT-20; Activation energy

Funding

  1. National Natural Science Foundation of China [51576103]
  2. National ST Major Project [ZX06901]

Ask authors/readers for more resources

NG-CT-10 and NG-CT-20 are newly developed grades of nuclear-grade graphite from China. In this study, their oxidation behaviors were experimentally investigated using thermal gravimetric analysis. Microstructural evolution before and after oxidation was investigated using scanning electron microscope, mercury intrusion, and Raman spectroscopy. The apparent activation energy of NG-CT-10 nuclear graphite is 161.4 kJ/mol in a reaction temperature range of 550-700 degrees C and that of NG-CT-20 is 153.5 kJ/mol in a temperature range of 550-650 degrees C. The activation energy in the inner diffusion control regime is approximately half that in the kinetics control regime. At high temperatures, the binder phase is preferentially oxidized over the filler particles and small pores are generated in the binder. No new large or deep pores are generated on the graphite surfaces. Oxygen can diffuse along the boundaries of filler particles and through the binder phase, but cannot diffuse into the spaces between the nanocrystallites in the filler particles. Filler particles are oxidized starting at their outer surfaces, and the sizes of nanocrystallites do not decrease following oxidation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available