4.7 Article

Integration of a multi-step heterologous pathway in Saccharomyces cerevisiae for the production of abscisic acid

Journal

MICROBIAL CELL FACTORIES
Volume 18, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12934-019-1257-z

Keywords

Abscisic acid; Metabolic engineering; Synthetic biology; Sesquiterpenoids; Terpenoids; Saccharomyces cerevisiae; Botrytis cinerea; Plant hormone

Funding

  1. Swedish Research Council (Vetenskapsradet)
  2. Anpanneforeningens Forskningsstiftelse
  3. Novo Nordisk Fonden [NNF10CC1016517]

Ask authors/readers for more resources

Background: The sesquiterpenoid abscisic acid (ABA) is mostly known for regulating developmental processes and abiotic stress responses in higher plants. Recent studies show that ABA also exhibits a variety of pharmacological activities. Affordable and sustainable production will be required to utilize the compound in agriculture and as a potential pharmaceutical. Saccharomyces cerevisiae is an established workhorse for the biotechnological production of chemicals. In this study, we constructed and characterised an ABA-producing S. cerevisiae strain using the ABA biosynthetic pathway from Botrytis cinerea. Results: Expression of the B. cinerea genes bcaba1, bcaba2, bcaba3 and bcaba4 was sufficient to establish ABA production in the heterologous host. We characterised the ABA-producing strain further by monitoring ABA production over time and, since the pathway contains two cytochrome P450 enzymes, by investigating the effects of overexpressing the native S. cerevisiae or the B. cinerea cytochrome P450 reductase. Both, overexpression of the native or heterologous cytochrome P450 reductase, led to increased ABA titres. We were able to show that ABA production was not affected by precursor or NADPH supply, which suggested that the heterologous enzymes were limiting the flux towards the product. The B. cinerea cytochrome P450 monooxygenases BcABA1 and BcABA2 were identified as pathway bottlenecks and balancing the expression levels of the pathway enzymes resulted in 4.1-fold increased ABA titres while reducing by-product formation. Conclusion: This work represents the first step towards a heterologous ABA cell factory for the commercially relevant sesquiterpenoid.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available