4.3 Article

Sustained release and pharmacologic evaluation of human glucagon-like peptide-1 and liraglutide from polymeric microparticles

Journal

JOURNAL OF MICROENCAPSULATION
Volume 36, Issue 8, Pages 747-758

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/02652048.2019.1677795

Keywords

Glucagon-like peptide-1; GLP1; liraglutide; microparticles; long-acting release

Funding

  1. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) [001]
  2. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)
  3. Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro Carlos Chagas Filho (FAPERJ)
  4. Programa Nacional de Apoio ao Desenvolvimento da Metrologia, Qualidade e Tecnologia (PRONAMETRO) from the Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO)

Ask authors/readers for more resources

The GLP1-receptor agonists exert regulatory key roles in diabetes, obesity and related complications. Here we aimed to develop polymeric microparticles loaded with homologous human GLP1 (7-37) or the analogue liraglutide. Peptide-loaded microparticles were prepared by a double emulsion and solvent evaporation process with a set of eight polymers based on lactide (PLA) or lactide-glycolide (PLGA), and evaluated for particle-size distribution, morphology, in vitro release and pharmacologic activity in mice. The resulting microparticles showed size distribution of about 30-50 mu m. The in vitro kinetic release assays showed a sustained release of the peptides extending up to 30-40 days. In vivo evaluation in Swiss male mice revealed a similar extension of glycemic and body weight gain modulation for up to 25 days after a single subcutaneous administration of either hGLP1-microparticles or liraglutide-microparticles. Microparticles-loaded hGLP1 shows equivalent in vivo pharmacologic activity to the microparticles-loaded liraglutide.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available