4.7 Article

Biosensor based on polyaniline-polyacrylonitrile-graphene hybrid assemblies for the determination of phenolic compounds in water samples

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 378, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.05.107

Keywords

Polyaniline; Nanocomposite; Polyphenol oxidase; Biosensor; Sensitivity

Funding

  1. National Natural Science Foundation of China [U1709201, 91128212]
  2. Global Climate Changes and Air-sea Interaction Program [GASI-02-PAC-ST-Wwin]
  3. National Key Research and Development Program of China [2016YFC0304905]

Ask authors/readers for more resources

Phenolic compounds are major environmental pollutants due to their toxic and hazardous nature on human health. A fast, sensitive and stable sensor for determination of phenolic compounds in the environmental water remains challenging. Herein, a biosensor platform with stable response current was fabricated by entrapment of polyphenol oxidase (PPO) into hybrid assemblies of the conducting polyaniline (PAni)-porous polyacrylonitrile (Pan)-nanostructured graphene (GRA) and phase inversion process. The porous structure of Pan provided a favorable microenvironment for easily binding to PAni and GRA to obtain hybrid assemblies for effective immobilization of enzyme and increased synergistic effect. The morphologies and the electrochemical behaviors of the as-prepared biosensor were investigated using scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), respectively. The proposed biosensor showed excellent sensitivity (6.46 mu A mu M-1 cm(-2)) and fast response time ((similar to)5 s) with low detection limit (2.65x10(-7) M) under the optimal pH value and applied potential. The biosensor was highly selective towards p-cresol that almost no signal was detected from common interferents. The biosensor was used for determination of phenolic compounds in water samples with satisfactory results compared with that of UPLC, demonstrating its great potential as a biosensor for the rapid determination of phenolic pollutants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available