4.6 Article

Synergistic mode of action of catechin, vanillic and protocatechuic acids to inhibit the adhesion of uropathogenic Escherichia coli on silicone surfaces

Journal

JOURNAL OF APPLIED MICROBIOLOGY
Volume 128, Issue 2, Pages 387-400

Publisher

OXFORD UNIV PRESS
DOI: 10.1111/jam.14472

Keywords

adhesion; anti-biofilm; catechin; protocatechuic acid; vanillic acid; synergism; uropathogenic E; coli

Funding

  1. Mexican Council for Science and Technology CONACYT [60224]
  2. CONACYT

Ask authors/readers for more resources

Aims To study the individual and combined contribution of catechin, protocatechuic and vanillic acids to inhibit the adhesion of uropathogenic Escherichia coli (UPEC) on the surface of silicone catheters. Methods and Results The adhesion of UPEC to silicone catheters during the exposure to nonlethal concentrations of phenolic compounds was measured, as well as changes in motility, presence of fimbriae, extra-cellular polymeric substances, surface charge, hydrophobicity and membrane fluidity. The phenolic combination reduced 26-51% of motility, 1 log CFU per cm(2) of adhered bacteria and 20-40% the carbohydrate and protein content in the biofilm matrix. Curli fimbriae, surface charge and cell hydrophobicity were affected to a greater extent by the phenolic combination. In the mixture, vanillic acid was the most effective for reducing bacterial adhesion, extra-polymeric substance production, motility, curli fimbriae and biofilm structure. Notwithstanding, protocatechuic acid caused major changes in the bacterial cell surface properties, whereas catechin affected the cell membrane functionality. Conclusion Catechin, protocatechuic and vanillic acids have different bacterial cell targets, explaining the synergistic effect of their combination against uropathogenic E. coli. Significance and Impact of Study This study shows the contribution of catechin, protocatechuic and vanillic acids in producing a synergistic mixture against the adhesion of uropathogenic E. coli on silicone catheters. The action of catechin, vanillic and protocatechuic acids included specific contributions of each compound against the E. coli membrane's integrity, motility, surface properties and production of extracellular polymeric substances. Therefore, the studied mixture of phenolic compounds could be used as an antibiotic alternative to reduce urinary tract infections associated with silicone catheters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available