4.5 Article

Solar Sintering for Lunar Additive Manufacturing

Journal

JOURNAL OF AEROSPACE ENGINEERING
Volume 32, Issue 6, Pages -

Publisher

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)AS.1943-5525.0001093

Keywords

Additive manufacturing; Interlocking building elements; Solar sintering; Moon

Funding

  1. European Union's Horizon 2020 research and innovation program [686202]

Ask authors/readers for more resources

Additive manufacturing (AM) is one of the most promising techniques for on-site manufacturing on extraterrestrial bodies. In this investigation, layerwise solar sintering under ambient and vacuum conditions targeting lunar exploration and a moon base was studied. A solar simulator was used in order to enable AM of interlockable building elements out of JSC-2A lunar regolith simulant. Solar additively manufactured samples were characterized mechanically regarding their compressive and bending properties. Moreover, samples were analyzed morphologically using X-ray tomography and scanning electron microscopy (SEM) followed by density measurements. AM for identical process parameters led to final products with different physical and chemical characteristics when performed under ambient and vacuum conditions. Hence, process parameters were optimized under each individual working atmosphere. The experimental data were further integrated into finite-element (FE) calculations. This led to the refinement of the design of interlocking building elements for lunar applications. These blocks have the potential to form structures for shielding a pressurized inflatable habitat from radiation and micrometeorite impacts or creating nonpressurized shelters for robotic machinery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available