4.7 Article

Topology optimization of microchannel heat sinks using a two-layer model

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2019.118462

Keywords

Microchannel heat sinks; Two-layer heat sink model; Temperature profiles; Topology optimization; Three-dimensional validation

Funding

  1. Villum Fonden through the Villum investigator project InnoTop
  2. China Scholarship Council (CSC)
  3. Fok Ying Tong Education Foundation for Young Teachers in the Higher Education Institutions of China [161047]

Ask authors/readers for more resources

This paper investigates the topology optimization of microchannel heat sinks. A two-layer heat sink model is developed allowing to do topology optimizations at close to two-dimensional computational cost. In the model, reduced two-dimensional fluid dynamics equations proposed in the literature based on a plane flow assumption are adopted. By assuming a fourth-order polynomial temperature profile of the heat sink thermal-fluid layer and a linear temperature profile in the substrate, two-dimensional heat transfer governing equations of the two layers are obtained which are thermally coupled through an out-of-plane heat flux term. Topology optimizations of a square heat sink are carried out using the two-layer model. Comparison with a three-dimensional conjugate heat transfer analysis of optimized designs in COMSOL Multiphysics validates the accuracy of the two-layer model. The re-evaluation of an optimized design by a one-layer model commonly seen in the literature shows the inadequacy of the one-layer model in predicting physical fields properly. In addition, the influence of physical and optimization parameters on the layout complexity of optimized designs is studied and related to the Peclet number. Optimizations under diffusion-dominated conditions are performed and typical optimized topologies for heat conduction structures are seen. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Computer Science, Interdisciplinary Applications

Topology optimization guided by a geometrical pattern library

Tanguy Navez, Martin-Pierre Schmidt, Ole Sigmund, Claus B. W. Pedersen

Summary: This work proposes an approach for structural Topology Optimization that enforces geometrical features on optimized designs using a predefined library of geometrical patterns. The approach applies density-based Topology Optimization with a geometrical constraint guiding the design towards shapes that match the geometrical features found in the predefined pattern library. Multiple distance measures and matching algorithms are studied to calculate local mappings between the design and the pattern library. An aggregated appearance constraint evaluates the pattern matching, and the optimization is performed using a gradient-based scheme. The convergence behavior is studied in various 2D and 3D optimization scenarios, including controlling material orientations and stress minimization.

STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION (2022)

Article Chemistry, Multidisciplinary

Non-Hierarchical Architected Materials with Extreme Stiffness and Strength

Fengwen Wang, Marie Brons, Ole Sigmund

Summary: Stretch-dominated truss and plate microstructures are competing in the development of highly rigid and strong architected materials. Although closed-cell isotropic plate microstructures meet theoretical upper bounds on stiffness, they have low buckling strength, whereas open-cell truss microstructures have high buckling strength but reduced stiffness. Hollow truss lattice and hierarchical microstructures outperform both in terms of buckling strength, but are challenging to build. In this study, single-scale non-hierarchical microstructures are designed, built, and tested, surpassing the buckling strength of hollow truss lattice and plate microstructures. The microstructures are realized with 3D printing and both experiments and numerical modeling validate the theoretical predictions.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Optics

Impact of figures of merit in photonic inverse design

Rasmus E. Christiansen, Philip Trost Kristensen, Jesper Mork, Ole Sigmund

Summary: Using topology optimization, compact wavelength-sized devices are designed to study the effect of optimizing geometries for enhancing different optical processes. The findings show that different field distributions lead to maximization of different processes, emphasizing the importance of targeting the appropriate metric when designing photonic components for optimal performance.

OPTICS EXPRESS (2023)

Article Engineering, Multidisciplinary

Multi-material topology optimization for maximizing structural stability under thermo-mechanical loading

Yafeng Wang, Ole Sigmund

Summary: This study aims to optimize the buckling capacity of mechanical structures subjected to thermal and mechanical loading through a density-based topology optimization scheme. By decoupling the effects of mechanical and thermal loadings, the buckling aspects induced by each loading can be separately analyzed and optimized. The study also employs a multi-material topology optimization scheme to optimize the buckling capacity of active structures and prestressed structures.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2023)

Article Engineering, Multidisciplinary

Simple and efficient GPU accelerated topology optimisation: Codes and applications

Erik A. Traff, Anton Rydahl, Sven Karlsson, Ole Sigmund, Niels Aage

Summary: This work presents three-dimensional linear elastic compliance minimisation using topology optimisation implementations accelerated by Graphics Processing Units (GPUs). Two GPU-accelerated implementations, based on OpenMP 4.5 and the Futhark language, are presented. Both implementations utilize high level GPU frameworks, avoiding the need for expertise knowledge of CUDA or OpenCL. Additionally, a vectorised and multi-threaded CPU code is included for reference. The results show that the GPU accelerated codes are able to solve large-scale topology optimisation problems faster than the reference CPU code, and they can also handle nonlinear problems.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2023)

Article Engineering, Multidisciplinary

Topology optimization of multiscale structures considering local and global buckling response

Christoffer Fyllgraf Christensen, Fengwen Wang, Ole Sigmund

Summary: Topology optimization has been used for maximizing stiffness or minimizing compliance in multiscale structures. This study focuses on optimizing buckling stability of multiscale structures with isotropic porous infill, by considering both local and global instability.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2023)

Article Engineering, Multidisciplinary

A strategy for avoiding spurious localized buckling modes in topology optimization

Federico Ferrari, Ole Sigmund

Summary: In this study, a strategy is introduced to prevent the occurrence of spurious modes in the spectrum computed by linearized buckling analysis in the context of topology optimization. Spurious buckling modes commonly appear in low density regions, but this study also highlights the occurrence of localized modes in solid areas due to the limitations of linearized buckling analysis. The proposed remedy involves using filtering and erosion operations on the stress field, helping to mitigate the occurrence of spurious modes and improve the optimization process towards high performance designs.

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING (2023)

Article Computer Science, Interdisciplinary Applications

Simultaneous shape and topology optimization of wings

Lukas C. Hoghoj, Cian Conlan-Smith, Ole Sigmund, Casper Schousboe Andreasen

Summary: This paper presents a method for simultaneous optimization of the outer shape and internal topology of aircraft wings, with the objective of minimizing drag subject to lift and compliance constraints for multiple load cases. The physics are evaluated by the means of a source-doublet panel method for the aerodynamic response and linear elastic finite elements for the structural response, which are one-way coupled. Wings of small fixed-wing airplanes both with and without a stiffening strut are optimized. The resulting wings show internal topologies with struts and wall-truss combinations, depending on the design freedom of the shape optimization. The lift distributions of the optimized wings show patterns like the ones obtained when performing optimization of wing shapes with constraints on the bending moment at the root.

STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION (2023)

Article Mathematics, Interdisciplinary Applications

Topology optimization of self-contacting structures

Andreas Henrik Frederiksen, Ole Sigmund, Konstantinos Poulios

Summary: This paper addresses the limitations of incorporating contact in topology optimization and proposes a new method for topology optimization problems with internal contact. The method ensures stability and robustness of the optimized designs by introducing a tangent stiffness requirement and penalizing small features. The examples demonstrate the effectiveness of the method in topology optimization under large deformations.

COMPUTATIONAL MECHANICS (2023)

Article Engineering, Multidisciplinary

Programming and physical realization of extreme three-dimensional responses of metastructures under large deformations

Weichen Li, Yingqi Jia, Fengwen Wang, Ole Sigmund, Xiaojia Shelly Zhang

Summary: This study systematically investigates several precisely programmed nonlinear extreme responses in 3D structures under finite deformations through multimaterial inverse design by topology optimization. Unique complex 3D geometries with deformation capabilities are discovered and utilized to deliver the target responses. The optimized structure is accurately fabricated through a proposed hybrid fabrication method and the design's programmed behavior is validated.

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE (2023)

Article Multidisciplinary Sciences

Self-bridging metamaterials surpassing the theoretical limit of Poisson's ratios

Jinhao Zhang, Mi Xiao, Liang Gao, Andrea Alu, Fengwen Wang

Summary: The authors have designed and realized self-bridging metamaterials with Poisson's ratios exceeding the theoretical limits. This finding is of great significance for expanding the range of achievable Poisson's ratios in mechanical systems, with implications for medical stents and soft robots.

NATURE COMMUNICATIONS (2023)

Article Engineering, Multidisciplinary

Phasor noise for dehomogenisation in 2D multiscale topology optimisation

Rebekka Woldseth, J. Andreas Baerentzen, Ole Sigmund

Summary: This paper presents an alternative approach to dehomogenisation of elastic Rank-N laminate structures based on the computer graphics discipline of phasor noise. The proposed methodology offers an improvement of existing methods, where high-quality single-scale designs can be obtained efficiently without the utilisation of any least-squares problem or pre-trained models. Numerical tests verifies the performance of the proposed methodology compared to state-of-the-art alternatives, and the dehomogenised designs achieve structural performance within a few percentages of the optimised homogenised solution.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Thermodynamics

Natural convection effects in insulation layers of spherical cryogenic storage tanks

Mahsa Taghavi, Swapnil Sharma, Vemuri Balakotaiah

Summary: This study investigates the natural convection effects in the insulation layers of spherical storage tanks and their impact on the tanks' performance. The permeability and Rayleigh number of the insulation material are considered as key factors. The results show that as the Rayleigh number increases, new convective cells emerge and cause the cold boundary to approach the external hot boundary. In the case of large temperature differences, multiple solutions may coexist.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Experimental investigation on self-induced jet impingement boiling using R1336mzz(Z)

Jinyang Xu, Fangjun Hong, Chaoyang Zhang

Summary: This study introduces a self-induced jet impingement device for enhancing pool boiling performance in high power electronic cooling. Through visualization and parametric investigations, the effects of this device on pool boiling performance are studied, revealing the promotion of additional liquid supply and vapor exhausting. The flow rate of the liquid jet is found to positively impact boiling performance.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Numerical study on multiphase evolution and molten pool dynamics of underwater wet laser welding in shallow water environment

Wenchao Ke, Yuan Liu, Fissha Biruke Teshome, Zhi Zeng

Summary: Underwater wet laser welding (UWLW) is a promising and labor-saving repair technique. A thermal multi-phase flow model was developed to study the heat transfer, fluid dynamics, and phase transitions during UWLW. The results show that UWLW creates a water keyhole, making the welding environment similar to in air laser welding.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Thermal conductivity analysis of natural fiber-derived porous thermal insulation materials

Xingrong Lian, Lin Tian, Zengyao Li, Xinpeng Zhao

Summary: This study investigates the heat transfer mechanisms in natural fiber-derived porous structures and finds that thermal radiation has a significant impact on the thermal conductivity in low-density regions, while natural convection rarely occurs. Insulation materials derived from micron-sized natural fibers can achieve minimum thermal conductivity at specific densities. Strategies to lower the thermal conductivity include increasing porosity and incorporating nanoscale pores using nanosize fibers.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Ice accretion compositions in ice crystal icing

Yasir A. Malik, Kilian Koebschall, Stephan Bansmer, Cameron Tropea, Jeanette Hussong, Philippe Villedieu

Summary: Ice crystal icing is a significant hazard in aviation, and accurate modeling of sticking efficiency is essential. In this study, icing wind tunnel experiments were conducted to quantify the volumetric liquid water fraction, sticking efficiency, and maximum thickness of ice layers. Two measurement techniques, calorimetry and capacitive measurements, were used to measure the liquid water content and distribution in the ice layers. The experiments showed that increasing wet bulb temperatures and substrate heat flux significantly increased sticking efficiency and maximum ice layer thickness.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Mechanisms for improving fin heat dissipation through the oscillatory airflow induced by vibrating blades

Jinqi Hu, Tongtong Geng, Kun Wang, Yuanhong Fan, Chunhua Min, Hsien Chin Su

Summary: This study experimentally examined the heat dissipation of vibrating fans and demonstrated its inherent mechanism through numerical simulation. The results showed that the flow fields induced by the vibrating blades exhibited pulsating features and formed large-scale and small-scale vortical structures, significantly improving heat dissipation. The study also identified the impacts of different blade structures and developed a trapezoidal-folding blade, which effectively reduced the maximum temperature of the heat source and alleviated high-temperature failure crisis.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Molecular dynamics simulation of interfacial heat transfer behavior during the boiling of low-boiling-point organic fluid

Dan-Dan Su, Xiao-Bin Li, Hong-Na Zhang, Feng-Chen Li

Summary: The boiling heat transfer of low-boiling-point working fluid is a common heat dissipation technology in electronic equipment cooling. This study analyzed the interfacial boiling behavior of R134a under different conditions and found that factors such as the initial thickness of the liquid film, solid-liquid interaction force, and initial temperature significantly affect the boiling mode and thermal resistance.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

A unified lattice Boltzmann- phase field scheme for simulations of solutal dendrite growth in the presence of melt convection

Jinyi Wu, Dongke Sun, Wei Chen, Zhenhua Chai

Summary: A unified lattice Boltzmann-phase field scheme is proposed to simulate dendrite growth of binary alloys in the presence of melt convection. The effects of various factors on the growth are investigated numerically, and the model is validated through comparisons and examinations.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Experimental study of the temperature characteristics of the main cables and slings in suspension bridge fires

Shaokun Ge, Ya Ni, Fubao Zhou, Wangzhaonan Shen, Jia Li, Fengqi Guo, Bobo Shi

Summary: This study investigated the temperature distribution of main cables in a suspension bridge during fire scenarios and proposed a prediction model for the maximum temperature of cables in different lane fires. The results showed that vehicle fires in the emergency lane posed a greater thermal threat to the cables.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Two-phase flow and heat transfer on a cylinder via low-velocity jet impact

Shuang-Ying Wu, Shi-Yao Zhou, Lan Xiao, Jia Luo

Summary: This paper investigates the two-phase flow and heat transfer characteristics of low-velocity jet impacting on a cylindrical surface. The study reveals that the heat transfer regimes are non-phase transition and nucleate boiling with the increase of heat transfer rate. The effects of jet impact height and outlet velocity on local surface temperatures are pronounced at the non-phase transition stage. The growth rates of heat transfer rate and liquid loss rate increase significantly from the non-phase transition to nucleate boiling stage.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Investigation on natural to ventilated cavitation considering the air-vapor interactions by Merging theory with insight on air jet location/rate effect

Emad Hasani Malekshah, Wlodzimierz Wlodzimierz, Miros law Majkut

Summary: Cavitation has significant practical importance and can be controlled by air injection. This study investigates the natural to ventilated cavitation process around a hydrofoil through numerical and experimental methods. The results show that the location and rate of air injection have a meaningful impact on the characteristics of cavitation.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Experimental and numerical investigation on the influence of wall deformations on mixing quality of a Multifunctional Heat Exchanger/Reactor (MHER)

Feriel Yahiat, Pascale Bouvier, Antoine Beauvillier, Serge Russeil, Christophe Andre, Daniel Bougeard

Summary: This study explores the enhancement of mixing performance in laminar flow equipment by investigating the generation of chaotic advection using wall deformations in annular geometries. The findings demonstrate that the combined geometry can achieve perfect mixing at various Reynolds numbers.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Experimental study on anti-frost property and edge effect of superhydrophobic surface with millimeter-scale geometries

Hui He, Ning Lyu, Caihua Liang, Feng Wang, Xiaosong Zhang

Summary: This study investigates the condensation, frosting, and defrosting processes on superhydrophobic surfaces with millimeter-scale structures. The results reveal that the structures can influence the growth and removal of frost crystals, with the bottom grooves creating a frost-free zone and conical edges promoting higher frost crystal heights. Two effective methods for defrosting are observed: hand-lifting the groove and airfoil retraction contraction on protruding structures. This research provides valuable insights into frost formation and defrosting on millimeter-structured superhydrophobic surfaces, with potential applications in anti-frost engineering.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Controlling heat capacity in a thermal concentrator using metamaterials: Numerical and experimental studies

Thiwanka Arepolage, Christophe Verdy, Thibaut Sylvestre, Aymeric Leray, Sebastien Euphrasie

Summary: This study developed two thermal concentrators, one with a 2D design of uniform thickness and another with a 3D design, using the coordinate transformation technique and metamaterials. By structuring the thermal conductor, the desired local density-heat capacity product and anisotropic thermal conductivities were achieved. The homogenized thermal conductivities were obtained from finite element simulations and cylindrical symmetry consideration. A 3D concentrator was fabricated using 3D metal printing and characterized using a thermal camera. Compared to devices that solely consider anisotropic conductivities, the time evolution characteristics of the metadevice designed with coordinate transformation were closer to those of an ideal concentrator.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Supercritical heat transfer of CO2 in horizontal tube emphasizing pseudo-boiling and stratification effects

Liangyuan Cheng, Qingyang Wang, Jinliang Xu

Summary: In this study, we investigated the supercritical heat transfer of CO2 in a horizontal tube with a diameter of 10.0 mm, covering a wide range of pressures, mass fluxes, and heat fluxes. The study revealed a non-monotonic increase in wall temperatures along the flow direction and observed both positive and negative wall temperature differences between the bottom and top tube. The findings were explained by the thermal conduction in the solid wall interacting with the stratified-wavy flow in the tube.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)