4.4 Article

An efficient resource allocation to improve QoS of 5G slicing networks using general processor sharing-based scheduling algorithm

Journal

Publisher

WILEY
DOI: 10.1002/dac.4250

Keywords

5G; dynamic shared flow; LTE; multi-applications data traffic; network slicing; static sharing flow

Funding

  1. Research Center of College of Computer and Information Sciences, King Saud University

Ask authors/readers for more resources

Fifth generation (5G) slicing is an emerging technology for software-defined networking/network function virtualization-enabled mobile networks. Improving the utilization and throughput to meet the quality of service (QoS) requirements of 5G slicing is very important for the operators of mobile networks. With growing data traffic from different applications of numerous smart mobile devices having several QoS requirements, we expect networks to face problems of congestion and overload that prevent the effective functioning of a radio access network (RAN). This paper proposes a more effective packet-based scheduling scheme for data traffic by 5G slicing with two operation modes for improving the resource utilization of 5G cloud RAN and providing an efficient isolation of the 5G slices. These two operation modes are referred to as static sharing resource (SSR) scheme and dynamic sharing resources (DSR) scheme. The SSR scheme is a modified version of an existing method. The goal of this approach is to reallocate the shared available resources of 5G network fairly and maximize the utilization of bandwidth while protecting a 5G slice from overwhelming other 5G slices. Throughput and delays of the system model are also discussed to show its performance limits. On the basis of the simulation outcomes, we observed that the proposed DSR scheme outperforms the SSR scheme in terms of provided delay and throughput. In addition, the token bucket parameters together with the assigned capacity weight for each slice can be selected and configured based on the required QoS. Finally, a good estimate for the maximum delay bounds of the slices is provided by the derived theoretical delay bound.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available