4.7 Article

An Adaptive Robust Optimization Model for Power Systems Planning With Operational Uncertainty

Journal

IEEE TRANSACTIONS ON POWER SYSTEMS
Volume 34, Issue 6, Pages 4606-4616

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPWRS.2019.2917854

Keywords

Generation expansion planning; renewable energy; robust optimization; transmission expansion planning

Funding

  1. Solar Energy Research Center [CONICYT/FONDAP/15110019]
  2. Complex Engineering Systems Institute [CONICYT/FB0816]
  3. [CONICYT/FONDECYT/11170423]

Ask authors/readers for more resources

There is an increasing necessity for new long-term planning models to adequately assess the flexibility requirements of significant levels of short-term operational uncertainty in power systems with large shares of variable renewable energy. In this context, this paper proposes an adaptive robust optimization model for the generation and transmission expansion planning problem. The proposed model has a two-stage structure that separates investment and operational decisions, over a given planning horizon. The key attribute of this model is the representation of daily operational uncertainty through the concept of representative days and the design of uncertainty sets that determine load and renewable power over such days. This setup allows an effective representation of the flexibility requirements of a system with large shares of variable renewable energy, and the consideration of a broad range of operational conditions. To efficiently solve the problem, the column and constraint generation method is employed. Extensive computational experiments on a 20-bus and a 149-bus representation of the Chilean power system over a 20-year horizon show the computational efficiency of the proposed approach, and the advantages as compared to a deterministic model with representative days, due to an effective spatial placement of both variable resources and flexible resources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available