4.7 Article

Improvements in Rational Design Strategies of Inulin Derivative Polycation for siRNA Delivery

Journal

BIOMACROMOLECULES
Volume 17, Issue 7, Pages 2352-2366

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.6b00281

Keywords

-

Funding

  1. Italian Ministry of Instruction, University and Research (MIUR), PRIN [20109PLMH2]

Ask authors/readers for more resources

The advances of short interfering RNA (siRNA)-mediated therapy provide a powerful option for the treatment of many diseases, including cancer, by silencing the expression of targeted genes involved in the progression of the pathology. On this regard, a new pH-responsive polycation derived from inulin, Inulin-g-imidazole-g-diethylenetriamine (INU-IMI-DETA), was designed and employed to produce INU-IMI-DETA/siRNA Inulin COmplex Nanoaggregates (ICONs). The experimental results showed that INU-IMI-DETA exhibited strong cationic characteristics and high solubility in the pH range 3-5 and self aggregation triggered by pH increase and physiological salt concentration. INU-IMI-DETA showed as well a high buffering capacity in the endosomal pH range of 7.4-5.1. In the concentration range between 25 and 1000 mu g/mL INU-IMI-DETA had no cytotoxic effect on breast cancer cells (MCF-7) and no lytic effect on human red blood cells. ICONs were prepared by two-step procedure involving complexation and precipitation into DPBS buffer (pH 7.4) to produce siRNA-loaded nanoaggregates with minimized surface charge and suitable size for parenteral administration. Bafilomycin Al inhibited transfection on MCF-7 cells, indicating that the protonation of the imidazole groups in the endolysosome pathway favors the escape of the system from endolysosomal compartment, increasing the amount of siRNA that can reach the cytoplasm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available