4.6 Article

A novel holey-LFP/graphene/holey-LFP sandwich nanostructure with significantly improved rate capability for lithium storage

Journal

ELECTROCHIMICA ACTA
Volume 320, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.134566

Keywords

Sandwich nanostructure; Porous nanoplate; Graphene aerogel; LiFePO4

Funding

  1. National Natural Science Foundation of China [51372178, 51602234]
  2. Natural Science Foundation of Hubei Province of China [2013CFA021, 2017CFB401, 2018CFA022]

Ask authors/readers for more resources

The development of high-performance and new-structure electrode materials is vital for the wide application of rechargeable lithium batteries in electric vehicles. In this work, we design a special composite electrode structure with the macroporous three-dimensional graphene areogel framework supporting mesoporous LiFePO4 nanoplate. It is realized using a simple sol-gel deposition method. The highly conductivity graphene nanosheets assemble into an interconnected three-dimensional macroporous areogel framework, while LiFePO4 grows along the graphene nanosheets and generates a mesoporous nanoplate structure. In comparison with LiFePO4, this unique sandwich nanostructure offers a greatly increased electronic conductivity thanks to the framework of graphene nanosheets. Also, the bimodal porous structure of the composite remarkably increases the interface between the electrode/electrolyte and facilitates the transport of Li+ throughout the electrode, enabling the superior specific capacity, rate characteristic and cyclic retention. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available