4.7 Article

Low-temperature plasma assisted growth of vertical graphene for enhancing carbon fibre/epoxy interfacial strength

Journal

COMPOSITES SCIENCE AND TECHNOLOGY
Volume 184, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2019.107867

Keywords

Vertical graphene; Carbon fibre; Hierarchical structure; Interfacial shear strength

Funding

  1. University of New South Wales

Ask authors/readers for more resources

The interfacial interaction between fibres and polymer matrix is critical to the mechanical and functional properties of fibre-reinforced composites. In this work vertical graphene (VG) is directly grown on carbon fibres using plasma-enhanced chemical vapour deposition (PECVD) operating at a relatively low-temperature around 400 degrees C. The VG height is controlled via plasma density that can be controlled by adjusting the distance between the substrate and plasma centre. The effects of VG with different heights on fibre surface roughness, wettability, tensile strength, and interfacial shear strength between carbon fibre and epoxy are investigated. Our results show that grafting VG at 400 degrees C does not degrade the mechanical strength of the carbon fibres; instead, it improves the interfacial shear strength between the carbon fibre and the epoxy, with the maximum increase in IFSS of similar to 118.7% at a VG height of similar to 4.2 mu m. This increase can be attributed to the greatly improved surface roughness and the reinforcement effect of vertical graphene surrounding the fibres. The research demonstrates the potential of grafting VG on carbon fibres in improving the mechanical properties of carbon fibre reinforced composites and developing multifunctional hierarchical carbon fibre reinforced composites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available