4.7 Article

Multi-component framework derived SiC composite paper to support efficient thermal transport and high EMI shielding performance

Journal

COMPOSITES PART B-ENGINEERING
Volume 176, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2019.107123

Keywords

Lightweight; Flexible; Hybrid composite paper; EMI shielding; Heat dissipation

Funding

  1. DST [PDF/2017/002601]
  2. Council of Scientific and Industrial Research (CSIR), India
  3. DST, Government of India

Ask authors/readers for more resources

Carbon-based electromagnetic interference (EMI) shielding materials have witnessed a fast evolution in recent years. But challenges of lightweight, flexibility, and good heat dissipation properties required to explore new EMI shielding materials. Herein, a unique SiC-based hybrid composite paper was prepared, as an advanced thermally stable and conductive material for boosting the EMI performance. In this study, a lightweight and flexible network structure of mesocarbon microbeads (MCMB) and multiwall carbon nanotubes (MWCNTs) with polyacrylonitrile (PAN) was developed and SiC was incorporated during the fabrication process or synthesized directly within the matrix structure. EMI shielding effectiveness (SE) of the hybrid composite papers was studied in the X-band frequency region and a maximum EMI SE value of -67 dB was achieved at a frequency of 10.3 GHz. In addition to EMI shielding properties, the hybrid composite paper shows high thermal stability and good thermal conductivity required for proper heat dissipation from the system accompanied by robust mechanical properties. These outcomes make SiC-composite paper attractive material for applications in the lightweight and flexible modern electronic devices with good heat dissipation characteristics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available