4.8 Article

Influence of feedstocks and modification methods on biochar's capacity to activate hydrogen peroxide for tetracycline removal

Journal

BIORESOURCE TECHNOLOGY
Volume 291, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2019.121840

Keywords

Advanced oxidation; Biochar; Hydrogen peroxide; Tetracycline; Modification

Funding

  1. National Natural Science Foundation of China [51879100]
  2. Program for Changjiang Scholars and Innovative Research Team in University [IRT-13R17]

Ask authors/readers for more resources

Three types of raw biochar (i.e. CBC, OBC, PBC produced from cornstalk, orange peel and peanut hull, respectively) and the modified ones (i.e., KMnO4-, KOH- and H3PO4-treatment) were employed to activate H2O2 for the removal of tetracycline (TC). The effects of pyrolysis temperatures, H2O2 concentration and initial pH were examined. TC removal by raw biochars w/o H2O2 was dependent on the feedstock and pyrolysis temperature of biochar, but the removal efficiency was still quite low under optimum conditions. The KMnO4 treatment significantly enhanced the adsorption of TC on all three biochars, but only enhanced the TC removal by CBC + H2O2. The KOH-treatment had insignificant effect on the adsorption of TC on biochar, but improved the performance of CBC/PBC + H2O2. The H3PO4-treatment had a negative impact on TC removal by biochar w/o H2O2. Overall, H2O2 could either enhance or decrease the TC removal by biochar, depending on biochar type, H2O2 concentration and solution pH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Physical

Phosphorus and kalium co-doped g-C3N4 with multiple-locus synergies to degrade atrazine: Insights into the depth analysis of the generation and role of singlet oxygen

Yaocheng Deng, Zhanpeng Zhou, Hao Zeng, Rongdi Tang, Ling Li, Jiajia Wang, Chengyang Feng, Daoxin Gong, Lin Tang, Ying Huang

Summary: In this study, phosphorus and kalium co-doped g-C3N4 with cyano and nitrogen vacancies (PKCN) was prepared via a simple thermal treatment. The prepared PKCN exhibited excellent singlet oxygen generation ability and efficiently degraded atrazine under visible light. Density functional theory calculations revealed the synergistic effect of different active units in efficient singlet oxygen generation. Additionally, the photocatalytic process significantly reduced the toxicity of atrazine.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Biophysics

3D printed bionic self-powered sensing device based on fern-shaped nitrogen doped BiVO4 photoanode with enriched oxygen vacancies

Xilian Ouyang, Chengyang Feng, Xu Zhu, Yibo Liao, Zheping Zhou, Xinya Fan, Ziling Zhang, Li Chen, Lin Tang

Summary: A portable 3D printed bionic sensing device with enhanced photoelectric response was fabricated for sensitive detection of Bisphenol A (BPA). The device utilized a dual-electrode system and a fern-shaped nitrogen doped BiVO4 photoanode to generate electrical output and provide the sensing signal. Integrated into a micromodel based on micro-nano 3D printing technology, the device achieved automatic sample injection and detection, paving a new way for the development of portable and on-site sensing devices.

BIOSENSORS & BIOELECTRONICS (2023)

Article Engineering, Environmental

Thin-walled vesicular Triazole-CN-PDI with electronic n?p* excitation and directional movement for enhanced atrazine photodegradation

Rongdi Tang, Hao Zeng, Daoxin Gong, Yaocheng Deng, Sheng Xiong, Ling Li, Zhanpeng Zhou, Jiajia Wang, Chengyang Feng, Lin Tang

Summary: In this study, triazole and pyromellitic diimide were used to modify polymeric carbon nitride (PCN) and fabricate TA-CN-PDI, a catalyst that promotes the photodegradation of atrazine. The vesicular morphology and the donor-pi-acceptor electronic structure synergistically enhance the photoactivity of the catalyst.

CHEMICAL ENGINEERING JOURNAL (2023)

Review Engineering, Environmental

Disinfection byproducts formation from emerging organic micropollutants during chlorine-based disinfection processes

Binbin Shao, Leyuan Shen, Zhifeng Liu, Lin Tang, Xiaofei Tan, Dongbo Wang, Weimin Zeng, Ting Wu, Yuan Pan, Xiansheng Zhang, Lin Ge, Miao He

Summary: This review discusses the formation of disinfection byproducts (DBPs) from emerging organic micropollutants (EOMPs) during chlorine-based disinfection processes (Cl-DPs). The typical Cl-DPs and their mechanisms are introduced, and the formation pathways, mechanisms, and influencing factors of DBPs in the presence of different EOMPs are discussed. The review also summarizes and discusses the detection and control methods of DBPs, and proposes future research directions and challenges in controlling their formation during disinfection processes.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Environmental

Adjusting charge kinetics of conjugated polymers via integration of LSPR effect with homojunction

Mingjuan Zhang, Lin Tang, Abing Duan, Yi Zhang, Fengjiao Xiao, Yuan Zhu, Jiajia Wang, Chengyang Feng, Nian Yin

Summary: This study investigates the adjustment of charge kinetics in semiconductors using the integration of LSPR effect with homojunction. A novel composite material is designed for this purpose. The results indicate the potential application value of this approach in adjusting charge kinetics and enhance the understanding of thermodynamic reactions.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Environmental

An S-scheme CdS/K2Ta2O6 heterojunction photocatalyst for production of H2O2 from water and air

Cui Lai, Mengyi Xu, Fuhang Xu, Bisheng Li, Dengsheng Ma, Yixia Li, Ling Li, Mingming Zhang, Danlian Huang, Lin Tang, Shiyu Liu, Huchuan Yan, Xuerong Zhou, Yukui Fu, Huan Yi

Summary: The production of hydrogen peroxide using solar energy is important for the chemical industry and environmental remediation. Researchers have successfully designed an S-scheme heterojunction photocatalyst with promoted charge separation and migration, achieving outstanding hydrogen peroxide production rate without sacrificial agents and additional oxygen. Experimental and theoretical studies suggest that the S-scheme heterojunction between CdS and KTO plays a crucial role in efficiently separating photogenerated electron-hole pairs, providing insights for the charge transfer mechanism and offering an innovative strategy for green, energy-saving, and sustainable hydrogen peroxide production.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Chemistry, Multidisciplinary

Highly efficient detection of ciprofloxacin with a self-powered sensing device based on a Au NPs/g-C3N4 micron tube and a 3D Ni-doped ZnIn2S4 thin film

Xilian Ouyang, Chengyang Feng, Xu Zhu, Yibo Liao, Xinya Fan, Zheping Zhou, Ziling Zhang, Lin Tang

Summary: Ciprofloxacin (CIP) is a widely used antibiotic that can enter the water environment and food chain, causing serious harm to human health and the ecological environment. This study presents a self-powered sensing device based on a photoelectrochemical system and 3D printing technology, which can detect CIP efficiently without an external power source.

ENVIRONMENTAL SCIENCE-NANO (2023)

Article Ecology

Lysogenic bacteriophages encoding arsenic resistance determinants promote bacterial community adaptation to arsenic toxicity

Xiang Tang, Linrui Zhong, Lin Tang, Changzheng Fan, Baowei Zhang, Mier Wang, Haoran Dong, Chengyun Zhou, Christopher Rensing, Shungui Zhou, Guangming Zeng

Summary: This study demonstrates that lysogenic bacteriophages carrying arsM gene assist their hosts in adapting to trivalent arsenic (As(III)) toxicity. The phage-host interplay promotes the spread of arsM among soil microbiota, enabling quick recovery of the bacterial community and enhancing arsenic methylation capability.

ISME JOURNAL (2023)

Correction Ecology

Lysogenic bacteriophages encoding arsenic resistance determinants promote bacterial community adaptation to arsenic toxicity (May 2023, 10.1038/s41396-023-01425-w)

Xiang Tang, Linrui Zhong, Lin Tang, Changzheng Fan, Baowei Zhang, Mier Wang, Haoran Dong, Chengyun Zhou, Christopher Rensing, Shungui Zhou, Guangming Zeng

ISME JOURNAL (2023)

Article Green & Sustainable Science & Technology

Catalytic thermal degradation of tetracycline based on iron-based MOFs and annealed derivative in dark condition

Hui Chen, Tao Cai, Wanyue Dong, Jiajia Wang, Yutang Liu, Wenlu Li, Xinxian Xia, Lin Tang

Summary: Excessive use of tetracycline in livestock farming has caused serious pollution. A new method proposed the catalytic thermal degradation of tetracycline using iron-based metal-organic frameworks (MOFs) and studied the mechanism. The annealing derivatives of three Fe-based MOFs showed better degradation performance than the raw materials due to the exposure of Fe-O clusters and the formation of oxygen vacancies. The optimum sample exhibited a degradation efficiency of 94.22% for tetracycline within 60 minutes at 70 degrees C.

JOURNAL OF CLEANER PRODUCTION (2023)

Article Environmental Sciences

Simultaneous Recovery of NH3-N and Removal of Heavy Metals from Manganese Residue Leachate Using an Electrodialysis System

Yuyang Yi, Haopeng Feng, Jiajia Wang, Jing Tang, Yangfeng Wu, Xiangmin Liang, Yuyao Guo, Lin Tang

Summary: In this study, a novel electrodialysis system with a self-growing titanium dioxide nanowire (TiO2 NW) electrode is proposed to recover NH3-N and remove heavy metals from manganese residue leachate (MRL), which can seriously affect the environment. Plant growth experiments and ecotoxicity studies are conducted to evaluate the ecological risks of the reuse of recovered NH3-N. The results show that the electrodialysis system can achieve high removal rates of heavy metals and recovery of NH3-N from MRL, and the recovered NH3-N can promote plant growth and optimize soil fertility.

ACS ES&T WATER (2023)

Article Multidisciplinary Sciences

Dual donor-acceptor covalent organic frameworks for hydrogen peroxide photosynthesis

Chencheng Qin, Xiaodong Wu, Lin Tang, Xiaohong Chen, Miao Li, Yi Mou, Bo Su, Sibo Wang, Chengyang Feng, Jiawei Liu, Xingzhong Yuan, Yanli Zhao, Hou Wang

Summary: This study designs benzotrithiophene-based covalent organic frameworks with spatially separated redox centers for the photocatalytic production of hydrogen peroxide. The triazine-containing framework demonstrates high selectivity for H2O2 photogeneration, with a yield rate of 2111μMh(-1) and a solar-to-chemical conversion efficiency of 0.296%.

NATURE COMMUNICATIONS (2023)

Article Multidisciplinary Sciences

Twistedly hydrophobic basis with suitable aromatic metrics in covalent organic networks govern micropollutant decontamination

Chencheng Qin, Yi Yang, Xiaodong Wu, Long Chen, Zhaoli Liu, Lin Tang, Lai Lyu, Danlian Huang, Dongbo Wang, Chang Zhang, Xingzhong Yuan, Wen Liu, Hou Wang

Summary: The pre-designable structure and unique architectures of covalent organic frameworks (COFs) make them attractive as active and porous medium for water crisis. However, the regulation of interfacial behavior in advanced oxidation decontamination using functional basis with different metrics remains challenging. In this study, different molecular interfaces were pre-designed and fabricated to achieve high removal rates for micropollutants by breaking through the adsorption energy barrier and promoting inner-surface renewal.

NATURE COMMUNICATIONS (2023)

Article Environmental Sciences

Floatable 3D Sponge@SBC-Induced Dual-Pathway-Activated Persulfate for Microcystis aeruginosa Inactivation

Lifei Deng, Yu Chen, Jiangfang Yu, Jie Yuan, Qili Peng, Yuyang Yi, Nile Wu, Lin Tang

Summary: Harmful algal blooms have become a global environmental problem. The synthesis of a novel floatable 3D sponge@SBC composite using biochar has shown excellent mechanical stability and catalytic performance in controlling algal blooms. The material also exhibits good repeatability in removing algae.

ACS ES&T WATER (2023)

Article Environmental Sciences

Effects of Heterogeneous Metals on the Generation of Persistent Free Radicals as Critical Redox Sites in Iron-Containing Biochar for Persulfate Activation

Cheng Huang, Fanzhi Qin, Chen Zhang, Danlian Huang, Lin Tang, Biao Song, Ming Yan, Wenjun Wang, Deyu Qin, Yin Zhou, Hanzhuo Luo, Guoge Fang

Summary: Metal components have significant impacts on the generation of persistent free radicals (PFRs) in biochar. This study investigates the effect of interactions among metal components on the formation of PFRs during biomass pyrolysis. The results show that the coupling of Fe with Co and Ni increases the abundance of PFRs in iron-containing biochars (IBCs), while Zn inhibits PFRs generation. Persulfate activation experiments confirm that PFRs are critical redox sites. NiFeO/BC is identified as a more efficient catalyst for PFRs activation. This study provides new methods for regulating PFRs in biochar and advances the understanding of metal-containing biomass pyrolysis processes.

ACS ES&T WATER (2023)

Article Agricultural Engineering

Carbamazepine facilitated horizontal transfer of antibiotic resistance genes by enhancing microbial communication and aggregation

Yinping Xiang, Meiying Jia, Rui Xu, Jialu Xu, Lele He, Haihao Peng, Weimin Sun, Dongbo Wang, Weiping Xiong, Zhaohui Yang

Summary: This study investigated the impact of the non-antibiotic pharmaceutical carbamazepine on antibiotic resistance genes (ARGs) during anaerobic digestion. The results showed that carbamazepine induced the enrichment of ARGs and increased the abundance of bacteria carrying these genes. It also facilitated microbial aggregation and intercellular communication, leading to an increased frequency of ARGs transmission. Moreover, carbamazepine promoted the acquisition of ARGs by pathogens and elevated their overall abundance.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

A review of microbial responses to biochar addition in anaerobic digestion system: Community, cellular and genetic level findings

Weixin Zhao, Tianyi Hu, Hao Ma, Dan Li, Qingliang Zhao, Junqiu Jiang, Liangliang Wei

Summary: This review summarizes the effects and potential mechanisms of biochar on microbial behavior in AD systems. The addition of biochar has been found to promote microbial colonization, alleviate stress, provide nutrients, and enhance enzyme activity. Future research directions include targeted design of biochar, in-depth study of microbial mechanisms, and improved models.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

Advances in nitrogen removal and recovery technologies from reject water: Economic and environmental perspectives

Christina Karmann, Anna Magrova, Pavel Jenicek, Jan Bartacek, Vojtech Kouba

Summary: This review assesses nitrogen removal technologies in reject water treatment, highlighting the differences in environmental impacts and economic benefits. Partial nitritation-anammox shows potential for economic benefits and positive environmental outcomes when operated and controlled properly.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Layered double hydroxide loaded pinecone biochar as adsorbent for heavy metals and phosphate ion removal from water

Wei-Hao Huang, Ying-Ju Chang, Duu-Jong Lee

Summary: This study modified pinecone biochar with layered double hydroxide (LDH) to enhance its adsorption capacity for heavy metal and phosphate ions. The LDH-biochar showed significantly improved adsorption capacities for Pb2+ and phosphate, and a slight increase for Cu2+ and Co2+. The LDH layer enhanced the adsorption through various mechanisms.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Machine learning-based prediction of methane production from lignocellulosic wastes

Chao Song, Fanfan Cai, Shuang Yang, Ligong Wang, Guangqing Liu, Chang Chen

Summary: This paper developed a machine learning model to predict the biochemical methane potential during anaerobic digestion. Model analysis identified lignin content, organic loading, and nitrogen content as key attributes for methane production prediction. For feedstocks with high cellulose content, early methane production is lower but can be improved by prolonging digestion time. Moreover, lignin content exceeding a certain value significantly inhibits methane production.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Engineering of Yarrowia lipolytica as a platform strain for producing adipic acid from renewable resource

Sang Min Lee, Ju Young Lee, Ji-Sook Hahn, Seung-Ho Baek

Summary: This study successfully developed an efficient platform strain using Yarrowia lipolytica for the bioconversion of renewable resources into adipic acid, achieving a remarkable increase in production level.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Synergies of pH-induced calcium phosphate precipitation and magnetic separation for energy-efficient harvesting of freshwater microalgae

Sefkan Kendir, Matthias Franzreb

Summary: This study presents a novel approach using magnetic separation to efficiently harvest freshwater microalgae, Chlorella vulgaris. By combining pH-induced calcium phosphate precipitation with cheap natural magnetite microparticles, harvesting efficiencies up to 98% were achieved in the model medium.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Solvothermal liquefaction of orange peels into biocrude: An experimental investigation of biocrude yield and energy compositional dependency on process variables

Ishaq Kariim, Ji-Yeon Park, Wajahat Waheed Kazmi, Hulda Swai, In-Gu Lee, Thomas Kivevele

Summary: The impact of reaction temperature, residence time, and ethanol: acetone on the energy compositions and yield enhancement of biocrudes was investigated. The results showed that under appropriate conditions, biocrudes with high energy and low oxygen content can be obtained, indicating a high potential for utilization.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Enhancing nitrogen removal performance through intermittent aeration in continuous plug-flow anaerobic/aerobic/anoxic process treating low-strength municipal sewage

Xiyue Zhang, Xiyao Li, Liang Zhang, Yongzhen Peng

Summary: Intermittent aeration is an innovative approach to enhance nitrogen removal in low carbon-to-nitrogen ratio municipal sewage, providing an efficient strategy for the continuous plug-flow AOA process.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Mechanism of magnetite-assisted aerobic composting on the nitrogen cycle in pig manure

Xu Yang, Mahmoud Mazarji, Mengtong Li, Aohua Li, Ronghua Li, Zengqiang Zhang, Junting Pan

Summary: This study investigated the impact of magnetite on the nitrogen cycle of pig manure biostabilisation. The addition of magnetite increased N2O emissions and decreased NH3 emissions during composting. It also increased the total nitrogen content but should be considered for its significant increase in N2O emissions in engineering practice.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

Recent advances in microalgal production, harvesting, prediction, optimization, and control strategies

Ty Shitanaka, Haylee Fujioka, Muzammil Khan, Manpreet Kaur, Zhi-Yan Du, Samir Kumar Khanal

Summary: The market value of microalgae has exponentially increased in the past two decades, thanks to their applications in various industries. However, the supply of high-value microalgal bioproducts is limited due to several factors, and strategies are being explored to overcome these limitations and improve microalgae production, thus increasing the availability of algal-derived bioproducts in the market.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Efficient supply with carbon dioxide from flue gas during large scale production of microalgae: A novel approach for bioenergy facades

Martin Kerner, Thorsten Wolff, Torsten Brinkmann

Summary: The efficiency of using enriched CO2 from flue gas for large-scale production of green microalgae has been studied. The results show that the use of membrane devices and static mixers can effectively improve the CO2 recovery rate and maintain the suitable pH and temperature during cultivation, achieving a more economical and sustainable microalgae production.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Carbon dioxide and methane as carbon source for the production of polyhydroxyalkanoates and concomitant carbon fixation

Rui Ma, Ji Li, Rd Tyagi, Xiaolei Zhang

Summary: This review summarizes the microorganisms capable of using CO2 and CH4 to produce PHAs, illustrating the production process, factors influencing it, and discussing optimization techniques. It identifies the challenges and future prospects for developing economically viable PHAs production using GHGs as a carbon source.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Contribution of zeolite to nitrogen retention in chicken manure and straw compost: Reduction of NH3 and N2O emissions and increase of nitrate

Bing Wang, Peng Zhang, Xu Guo, Xu Bao, Junjie Tian, Guomin Li, Jian Zhang

Summary: The addition of zeolite in the co-composting of chicken manure and straw significantly reduced the emissions of ammonia and N2O, and increased the nitrate content. Zeolite also promoted the abundance of nitrification genes and inhibited the expression of denitrification genes.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Exploring advanced phycoremediation strategies for resource recovery from secondary wastewater using a large scale photobioreactor

Rohit Dey, Franziska Ortiz Tena, Song Wang, Josef Martin Messmann, Christian Steinweg, Claudia Thomsen, Clemens Posten, Stefan Leu, Matthias S. Ullrich, Laurenz Thomsen

Summary: This study investigated the operation of a 1000L microalgae-based membrane photobioreactor system for continuous secondary wastewater treatment. The research focused on a green microalgae strain called Desmodesmus sp. The study aimed to understand key trends and optimization strategies by conducting experiments in both summer and winter seasons. The findings showed that maintaining low cell concentrations during periods of light inhibition was beneficial for nutrient uptake rates. Effective strategies for enhancing algae-based wastewater treatment included cell mass recycling and adjusting dilution rates based on light availability.

BIORESOURCE TECHNOLOGY (2024)