4.8 Review

Liposomal formulations of photosensitizers

Journal

BIOMATERIALS
Volume 218, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2019.119341

Keywords

Liposomes; Photosensitizers; Photodynamic therapy; Photothermal therapy

Funding

  1. National Institutes of Health [R01EB017270, DP50D017898]
  2. National Science Foundation [1555220]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Materials Research [1555220] Funding Source: National Science Foundation

Ask authors/readers for more resources

Photodynamic therapy (PDT) is a clinical ablation modality to treat cancers and other diseases. PDT involves administration of a photosensitizer, followed by irradiation of target tissue with light. As many photosensitizers are small and hydrophobic, solubilization approaches and nanoscale delivery vehicles have been extensively explored. Liposomes and lipid-based formulations have been used for the past 30 years, and in some cases have been developed into well-defined commercial PDT products. This review provides an overview of common liposomal formulation strategies for photosensitizers for PDT and also photothermal therapy. Furthermore, research efforts have examined the impact of co-loading therapeutic cargo along with photosensitizers within liposomes. Additional recent approaches including imaging, overcoming hypoxia, upconversion and activatable liposomal formulations are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Engineering, Biomedical

A novel capsid-XL32-derived adeno-associated virus serotype prompts retinal tropism and ameliorates choroidal neovascularization

Lin-Lin Luo, Jie Xu, Bing-Qiao Wang, Chen Chen, Xi Chen, Qiu-Mei Hu, Yu-Qiu Wang, Wan-Yun Zhang, Wan-Xiang Jiang, Xin-Ting Li, Hu Zhou, Xiao Xiao, Kai Zhao, Sen Lin

Summary: A novel AAV serotype, AAVYC5, introduced in this study, showed more efficient transduction into multiple retinal layers compared to AAV2, and enabled successful delivery of anti-angiogenic molecules in mice and non-human primates.

BIOMATERIALS (2024)