4.7 Article

Poly(ε-caprolactone-co-p-dioxanone): a Degradable and Printable Copolymer for Pliable 3D Scaffolds Fabrication toward Adipose Tissue Regeneration

Journal

BIOMACROMOLECULES
Volume 21, Issue 1, Pages 188-198

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.9b01126

Keywords

-

Funding

  1. Swedish Foundation for Strategic Research [RMA15-0010]
  2. Swedish Foundation for Strategic Research (SSF) [RMA15-0010] Funding Source: Swedish Foundation for Strategic Research (SSF)

Ask authors/readers for more resources

The advancement of 3D printing technologies in the fabrication of degradable scaffolds for tissue engineering includes, from the standpoint of the polymer chemists, an urgent need to develop new materials that can be used as ink and are suitable for medical applications. Here, we demonstrate that a copolymer of epsilon-caprolactone (CL) with low amounts of p-dioxanone (DX) (15 mol %) is a degradable and printable material that suits the requirements of melt extrusion 3D printing technologies, including negligible degradation during thermal processing. It is therefore a potential candidate for soft tissue regeneration. The semicrystalline CL/DX copolymer is processed at a lower temperature than a commercial polycaprolactone (PCL), shaped as a filament for melt extrusion 3D printing and as porous and pliable scaffolds with a gradient design. Scaffolds have Young's modulus in the range of 60-80 MPa, values suitable for provision of structural support for damaged soft tissue such as breast tissue. SEM and confocal microscope indicate that the CL/DX copolymer scaffolds support adipose stem cell attachment, spreading, and proliferation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available