4.5 Article

Zinc Deficiency Promoted Fibrosis via ROS and TIMP/MMPs in the Myocardium of Mice

Journal

BIOLOGICAL TRACE ELEMENT RESEARCH
Volume 196, Issue 1, Pages 145-152

Publisher

SPRINGERNATURE
DOI: 10.1007/s12011-019-01902-4

Keywords

Zn deficiency; Myocardial fibrosis; Oxygen radicals (ROS); Matrix metalloproteinases (MMPs); Extracellular matrix (ECM)

Ask authors/readers for more resources

Zinc (Zn) is an important trace element in the body that has antioxidant effects. It has been proven that Zn deficiency can cause oxidative stress. The purpose of the present study was to clarify the effect and mechanism of Zn deficiency on myocardial fibrosis. Mice were fed with different Zn levels dietary for 9 weeks: Zn-normal group (ZnN, 34 mg Zn/kg), Zn-deficient group (ZnD, 2 mg Zn/kg), and Zn-adequate group (ZnA, 100 mg Zn/kg). We found that the Zn-deficient diet reduced the Zn concentration in myocardial tissue. Moreover, the TUNEL results demonstrated that cardiomyocytes in the ZnD group died in large numbers. Furthermore, ROS levels were significantly increased, and metallothionein (MT) expression levels decreased in the ZnD group. The results of Sirius Red staining indicated an increase in collagen in the ZnD group. Moreover, the ELISA results showed that collagen I, III, and IV and fibronectin (FN) were increased. In addition, the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) was detected by RT-qPCR. The results showed that the expression of TIMP-1 in the ZnD group was increased, while MMPs were decreased. Immunohistochemical results showed an increase in the content of alpha-smooth muscle actin (alpha-SMA), while H&E staining showed an increase in interstitial width and a decrease in the number of cardiac cells. All data suggest that Zn deficiency enhances the oxidative stress response of myocardial tissue and eventually triggers myocardial fibrosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available