4.6 Article

An Optical Model for Quantitative Raman Microspectroscopy

Journal

APPLIED SPECTROSCOPY
Volume 74, Issue 6, Pages 684-700

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/0003702819895299

Keywords

Raman spectroscopy; quantitative Raman; optical modeling; organic compound detection; detection limits; Mars 2020

Funding

  1. NASA Postdoctoral Program fellowship

Ask authors/readers for more resources

Raman spectroscopy is an invaluable technique for identifying compounds by the unique pattern of their molecular vibrations and is capable of quantifying the individual concentrations of those compounds provided that certain parameters about the sample and instrument are known. We demonstrate the development of an optical model to describe the intensity distribution of incident laser photons as they pass through the sample volume, determine the limitations of that volume that may be detected by the spectrometer optics, and account for light absorption by molecules within the sample in order to predict the total Raman intensity that would be obtained from a given, uniform sample such as an aqueous solution. We show that the interplay between the shape and divergence of the laser beam, the position of the focal plane, and the dimensions of the spectrometer slit are essential to explaining experimentally observed trends in deep ultraviolet Raman intensities obtained from both planar and volumetric samples, including highly oriented pyrolytic graphite and binary mixtures of organic nucleotides. This model offers the capability to predict detection limits for organic compounds in different matrices based on the parameters of the spectrometer, and to define the upper/lower limits within which concentration can be reliably determined from Raman intensity for such samples. We discuss the potential to quantify more complex samples, including as solid phase mixtures of organics and minerals, that are investigated by the unique instrument parameters of the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) investigation on the upcoming Mars 2020 rover mission.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available