4.6 Article

Study on Three-Dimensional Stress Field of Gob-Side Entry Retaining by Roof Cutting without Pillar under Near-Group Coal Seam Mining

Journal

PROCESSES
Volume 7, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/pr7090552

Keywords

non-pillar; gob-side entry retaining by roof cutting; close distance coal seams; goaf; stress distribution

Funding

  1. National Key Research and Development Plan of China [2016YFC0600901]
  2. National Natural Science Foundation of China [51874311]
  3. Special Fund of Basic Research and Operating of China University of Mining & Technology, Beijing [2009QL03]

Ask authors/readers for more resources

In order to explore the distribution law of stress field under the mining mode of gob-side entry retaining by roof cutting without pillar (GERRCP) under goaf, based on the engineering background of 8102 and 9101 working faces in Xiashanmao coal mine, the stress field distribution of GERRCP and traditional remaining pillar was studied by means of theoretical analysis and numerical simulation. The simulation results showed that: (1) in the front of the working face, the vertical peak stress of non-pillar mining was smaller than that of the remaining pillar mining, and it could effectively control stress concentration in surrounding rock of the mining roadway; the trend of horizontal stress distribution of the two was the same, and the area, span and peak stress of stress the rise zone were the largest in large pillar mining and the minimum in non-pillar mining. (2) On the left side of the working face, the vertical stress presented increasing-decreasing characteristics under non-pillar mining mode and saddle-shaped distribution characteristics under the remaining pillar mining mode respectively. Among them, the peak stress was the smallest under non-pillar mining, and compared with the mining of the large pillar and small pillar, non-pillar mining decreased by 12-21% and 3-10% respectively. The position of peak stress of the former was closer to the mining roadway, indicating that the width of the plastic zone of the surrounding rock of the non-pillar mining was smaller and bearing capacity was higher. In the mining of the large and small pillar, the horizontal stress formed a high stress concentration in the pillar and 9102 working face respectively. In non-pillar mining, the horizontal stress concentration appeared in solid coal, but the concentration area was small.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available