4.7 Article

Multi-Omics Characterization of the Spontaneous Mesenchymal-Epithelial Transition in the PMC42 Breast Cancer Cell Lines

Journal

JOURNAL OF CLINICAL MEDICINE
Volume 8, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/jcm8081253

Keywords

copy number variations (CNV); epithelial-mesenchymal transition (EMT); karyotyping; mesenchymal-epithelial transition (MET); metabolism; proteomics; RNA-sequencing; seahorse extracellular flux analyser; whole exome sequencing

Funding

  1. National Breast Cancer Foundation [CG-10-04]
  2. National Breast Cancer Foundation [CG-10-04] Funding Source: researchfish

Ask authors/readers for more resources

Epithelial-mesenchymal plasticity (EMP), encompassing epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET), are considered critical events for cancer metastasis. We investigated chromosomal heterogeneity and chromosomal instability (CIN) profiles of two sister PMC42 breast cancer (BC) cell lines to assess the relationship between their karyotypes and EMP phenotypic plasticity. Karyotyping by GTG banding and exome sequencing were aligned with SWATH quantitative proteomics and existing RNA-sequencing data from the two PMC42 cell lines; the mesenchymal, parental PMC42-ET cell line and the spontaneously epithelially shifted PMC42-LA daughter cell line. These morphologically distinct PMC42 cell lines were also compared with five other BC cell lines (MDA-MB-231, SUM-159, T47D, MCF-7 and MDA-MB-468) for their expression of EMP and cell surface markers, and stemness and metabolic profiles. The findings suggest that the epithelially shifted cell line has a significantly altered ploidy of chromosomes 3 and 13, which is reflected in their transcriptomic and proteomic expression profiles. Loss of the TGF beta R2 gene from chromosome 3 in the epithelial daughter cell line inhibits its EMT induction by TGF-beta stimulus. Thus, integrative 'omics' characterization established that the PMC42 system is a relevant MET model and provides insights into the regulation of phenotypic plasticity in breast cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available