4.2 Article

Thermal and Morphology Properties of Cellulose Nanofiber from TEMPO-oxidized Lower part of Empty Fruit Bunches (LEFB)

Journal

OPEN CHEMISTRY
Volume 17, Issue 1, Pages 526-536

Publisher

SCIENDO
DOI: 10.1515/chem-2019-0063

Keywords

TEMPO; Cellulose Nanofiber; Bleaching level; Empty Fruit Bunch; Oil Palm

Funding

  1. Indonesian Ministry of Research, Technology and Higher Education (KEMENRISTEKDIKTI)

Ask authors/readers for more resources

Cellulose nanofiber (CNF) gel has been obtained from TEMPO-oxidized differently treated lower part of empty fruit bunches (LEFB) of oil palm. Three kinds of materials were initially used: (i) a-cellulose, (ii) raw LEFB fiber two-times bleaching, and (iii) raw LEFB three-times bleaching. The obtained nanofibers (CNF1, CNF2 and CNF3, respectively) were then characterized using several methods, e.g. FT-IR, SEM, UV-Visible, TEM, XRD and TGA. The LEFB at different levels of bleaching showed that the Kappa number decreased with the increase of the bleaching levels. The decrease of lignin and hemicellulose content affected the increase of the yield of fibrillation and optical transmittance of CNF2 and CNF3 gels. The FT-IR analysis confirmed the presence of lignin and hemicellulose in the CNF2 and CNF3 film. Based on TEM analysis, the lignin and hemicellulose content significantly affected the particle structure of CNFs, i.e. CNF1 was found as a bundle of fibril, while the CNF2 and CNF3 were visualized as individual fibers and interwoven nanofibril overlapping each other, respectively. The XRD data of the CNF's film showed that CNF2 and CNF3 have a lower crystallinity index (CI) than CNF1. The presence of lignin and hemicellulose in the CNFs decreased its decomposition temperature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available