4.6 Article

Predicting fatigue crack propagation in residual stress field due to welding by meshless local Petrov-Galerkin method

Journal

JOURNAL OF MANUFACTURING PROCESSES
Volume 45, Issue -, Pages 379-391

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jmapro.2019.07.019

Keywords

MLPG; Weight function; Shape function; Residual stress; Stress intensity factor; Fatigue crack propagation

Ask authors/readers for more resources

This paper introduces a novel procedure to develop the MLPG method for investigating residual stress effect on the Fatigue Crack Propagation (FCP) rate. A new formulation is introduced based on thermoelastic-plastic equation for this method to numerical analysis of the residual stress due to welding. The most important part of numerical analysis by MLPG method is to determine the residual stress redistribution due to crack growth and calculation of the Stress Intensity Factor (SIF) in residual stress field. A good agreement is seen between the outputs of MLPG method to the Hole-Drilling Strain-Gage method results. The standard weight function is developed without increasing the computational time for simulation of the displacement and stress around the crack. The Superposition principle is employed to consider the residual stress effect on the SIF and cycle ratio. Finally, the Walker's FCP equation is modified to take into account the simultaneous effects of cyclic loading and residual stress. It was discovered that the results obtained from the purposed method is in a good agreement with FCP experimental results. Therefore, it can be concluded a new approach is developed to analyze the calculation of SIF in the residual stress field and its effect on the FCP rate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available