4.6 Article

Corrosion-Fatigue Evaluation of Uncoated Weathering Steel Bridges

Journal

APPLIED SCIENCES-BASEL
Volume 9, Issue 17, Pages -

Publisher

MDPI
DOI: 10.3390/app9173461

Keywords

corrosion-fatigue; pitting corrosion; critical pitting size; fracture mechanics; uncoated weathering steel

Funding

  1. National Natural Science Foundation of China [51778536, 51908472]
  2. Doctoral Innovation Fund Program of Southwest Jiaotong University [D-CX201701]
  3. Zhejiang Department of Transportation [10115066]
  4. China postdoctoral science foundation [2019TQ0271]

Ask authors/readers for more resources

Uncoated weathering steel (UWS) bridges have been extensively used to reduce the lifecycle cost since they are maintenance-free and eco-friendly. However, the fatigue issue becomes significant in UWS bridges due to the intended corrosion process utilized to form the corrodent-proof rust layer instead of the coating process. In this paper, an innovative model is proposed to simulate the corrosion-fatigue (C-F) process in UWS bridges. Generally, the C-F process could be considered as two relatively independent stages in a time series, including the pitting process of flaw-initiation and the fatigue crack propagation of the critical pitting flaw. In the proposed C-F model, Faraday's law has been employed at the critical flaw-initiation stage to describe the pitting process, in which the pitting current is applied to reflect the pitting rate in different corrosive environments. At the crack propagation stage, the influence of pitting corrosion is so small that it can be safely ignored. In simulating the crack propagation stage, the advanced NASGRO equation proposed by the NASA is employed instead of the classic Paris' law, in which a modified fatigue limit is adopted. The fatigue limit is then used to determine the critical size of pitting flaws, above which the fatigue effect joins as a parallel driving force in crack propagation. The model is then validated through the experimental data from published articles at the initiation stage as well as the whole C-F process. Two types of structural steel, i.e., HPS 70W and 14MnNbq steel, have been selected to carry out a case study. The result shows that the C-F life can be notably prolonged in the HPS 70W due to the enhancement in fatigue strength and corrosion resistance. Besides, a sensitivity analysis has been made on the crucial parameters, including the stress range, stress ratio, corrosive environment and average daily truck traffic (ADTT). The result has revealed the different influence of the above parameters on the initiation life and propagation life.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available