4.5 Article

Targeting Mechanistic Target of Rapamycin Complex 1 Restricts Proinflammatory T Cell Differentiation and Ameliorates Takayasu Arteritis

Journal

ARTHRITIS & RHEUMATOLOGY
Volume 72, Issue 2, Pages 303-315

Publisher

WILEY
DOI: 10.1002/art.41084

Keywords

-

Categories

Funding

  1. National Nature Science Foundation of China [31300722]

Ask authors/readers for more resources

Objective Takayasu arteritis (TAK) is a progressive autoimmune large vessel vasculitis with infiltration of proinflammatory T cells, with a largely unknown etiology. This study was undertaken to explore the involvement of mechanistic target of rapamycin (mTOR) in proinflammatory T cell differentiation and disease progression in TAK. Methods Ninety-five patients with TAK, 26 patients with small vessel vasculitis, and 40 healthy donors were enrolled. Naive and memory CD4+ T cells were activated with anti-CD3/CD28 beads and analyzed for lineage differentiation. The mTORC1 activity was determined by quantifying intracellular phospho-S6 kinase 1 and phospho-S6 ribosomal protein. Rapamycin and lentiviral regulatory-associated protein of mTOR short hairpin RNA were used to block mTORC1 activity. Human artery-NSG mouse chimeras representing human TAK were established for targeting mTORC1 in disease treatment. Results TAK CD4+ T cells were selectively prepositioned with hyperactivity of mTORC1 (P < 0.001), resulting in spontaneous maldifferentiation of Th1 and Th17 cells (P < 0.001). Activity of mTORC1(high) in circulating CD4+ T cells predicted elevated frequencies of proinflammatory T cells and active disease in TAK patients (P < 0.001). Blockade of mTORC1 with rapamycin efficiently abrogated the maldifferentiation of Th1 and Th17 cells (P < 0.01) and ameliorated vasculitis in humanized TAK chimeras (P < 0.001). Inhibition of mTORC1 using RNA interference technology is sufficient to reduce proinflammatory T cell frequencies (P < 0.01) and restrict TAK disease progression in vivo (P < 0.01). Conclusion Our findings indicate that hyperactivity of mTORC1 is a critical cell-intrinsic mechanism underlying spontaneous maldifferentiation of proinflammatory T cells in TAK patients. Targeting mTORC1 is a promising therapeutic strategy against TAK.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available