4.6 Article

Drought Risk Assessment and Estimation in Vulnerable Eco-Regions of China: Under the Background of Climate Change

Journal

SUSTAINABILITY
Volume 11, Issue 16, Pages -

Publisher

MDPI
DOI: 10.3390/su11164463

Keywords

drought; risk assessment; risk estimate; hazard; vulnerability; exposure

Funding

  1. National Key Research and Development Program of China [2018YFC1509003, 2016YFA0602703]
  2. National Natural Science Foundation of China [41575001]
  3. Skate Key Laboratory of Earth Surface Processes and Resource Ecology Project [2017-FX-03]
  4. Supported Scientific Research Foundation Beijing Normal University [2015KJJCA14]

Ask authors/readers for more resources

Drought risk analysis can help improve disaster management techniques, thereby reducing potential drought risk under the impacts of climate change. This study analyses observed and model-simulated spatial patterns of changes in drought risk in vulnerable eco-regions in China during 1988-2017 and 2020-2050 using an analytic hierarchy process (AHP) method. To perform a risk assessment and estimation of a drought disaster, three subsystems-namely hazard, vulnerability and exposure-are assessed in terms of the effects of climate change since the middle of the 21st century: (i) Hazards, represented by climate anomalies related to the drought process, such as changes in rainfall averages, temperature averages and evaporation averages; (ii) vulnerability, encompassing land use and mutual transposition between them; (iii) exposure, consisting of socioeconomic, demographic, and farming. The results demonstrated that high hazards continue to be located in the arid zone, high vulnerability levels occur in the Junggar Basin and Inner Mongolia Plateau, and high exposure levels occur Loess Plateau and southern coastal area. In this way, the results provide exhaustive measures for proactive drought risk management and mitigation strategies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available