4.7 Article

The Architecture of Traveling Actin Waves Revealed by Cryo-Electron Tomography

Journal

STRUCTURE
Volume 27, Issue 8, Pages 1211-+

Publisher

CELL PRESS
DOI: 10.1016/j.str.2019.05.009

Keywords

-

Funding

  1. German Science Foundation (Excellence Cluster Center for Integrated Protein Science Munich)
  2. Human Frontier Science Program [RGP0035/2016]
  3. Max Planck Society

Ask authors/readers for more resources

Actin waves are dynamic supramolecular structures involved in cell migration, cytokinesis, adhesion, and neurogenesis. Although wave-like propagation of actin networks is a widespread phenomenon, the actin architecture underlying wave propagation remained unknown. In situ cryo-electron tomography of Dictyostelium cells unveils the wave architecture and provides evidence for wave progression by de novo actin nucleation. Subtomogram averaging reveals the structure of Arp2/3 complex-mediated branch junctions in their native state, and enables quantitative analysis of the 3D organization of branching within the waves. We find an excess of branches directed toward the substrate-attached membrane, and tent-like structures at sites of branch clustering. Fluorescence imaging shows that Arp2/3 clusters follow accumulation of the elongation factor VASP. We propose that filament growth toward the membrane lifts up the actin network as the wave propagates, until depolymerization of oblique filaments at the back causes the collapse of horizontal filaments into a compact layer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available