4.7 Article

Acoustic driven microbubble motor device

Journal

SENSORS AND ACTUATORS A-PHYSICAL
Volume 295, Issue -, Pages 343-347

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.sna.2019.05.013

Keywords

Acoustic micromotor; Microbubble oscillation

Funding

  1. Turkish Ministry of National Education on behalf of Bozok University [:1416-11/2]

Ask authors/readers for more resources

We have developed an acoustic frequency driven microbubble motor (AFMO) device and achieved highspeed rotation up to 450 RPM and torque of 2.3 x 10-9 (N.m). Additionally, the bidirectional rotation of this device has been demonstrated by modulating input frequencies. This device, directly constructed from UV curable resin by a micro-3D printer, has four microscale cavities that contain micro air bubbles when immersed in water. Once external 4 kHz acoustic waves stimulate these four cavities, microbubbles are extracted and positioned at the entrances of the cavities. These four microbubbles have identical dimensions and oscillation resonant frequencies of 5.6 kHz based on theoretical calculations that can spin the AFMO device in a clockwise direction. Both the clockwise and the counterclockwise rotation of the AFMO device have observed at a 5.6 and 5.1 kHz frequency input, respectively. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available