4.7 Article

Functional biogeography: Stoichiometry and thresholds for interpreting nutrient limitation in aquatic plants

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 677, Issue -, Pages 447-455

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.04.366

Keywords

Carbon; Nitrogen; Phosphorus; Stoichiometry; Nutrient critical threshold; Juncus bulbosus

Funding

  1. Norwegian Research Council (NFR)
  2. Krypsivprosjektet pa Sorlandet
  3. Norwegian Institute for Water Research (NIVA)
  4. University of Oslo

Ask authors/readers for more resources

Atmospheric N pollution may shift nutrient limitations in aquatic autotrophs from N to P or cause an intensification of P limitation in formerly pristine areas. Small changes in nutrient supply in oligotrophic lakes and rivers could lead to large changes in relative plant growth and yield with possible knock on effects on ecosystem carbon cycling through changes in the decomposition rate of their tissue. Previous biogeographical studies have shown inconsistent responses of plant nutrient tissue content and stoichiometry (functional traits) to external nutrient availability. Here we used a single species, Juncus bulbosus, to test the interplay between plant tissue nutrient (content and stoichiornetry) and external environmental factors (local and catchment scale). We developed a comparative approach applicable globally to assess the thresholds for nutrient limitation in aquatic plants in the wild. Phosphorus in Juncus bulbosus tissue was negatively related to sediment organic matter (Fe root plaque limiting P uptake) and catchment vegetation cover (less P leaching to lakes). Our comparative approach revealed that the lack of increase in N plant tissue along the strong gradient in external N concentration may be explained by P limitation and strict plant tissue N:P ratio. Our comparative approach further showed that the nutrient content and stoichiometry ofJuncus bulbosus was similar to other submerged aquatic plants growing in nutrient poor aquatic ecosystems. In southern Norway, mass development of Juncus bulbosus may be primarily triggered by changes in P availability, rather than CO2 or inorganic N, as previously thought, although co-limitations are also possible. If so, the mass development of Juncus bulbosus in oligotrophic aquatic ecosystems could be an early indicator of increasing P fluxes through these ecosystems which are less limited by N due to high atmospheric N deposition. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available